Integration of Deep Learning Radiomics and Counts of Circulating Tumor Cells Improves Prediction of Outcomes of Early Stage NSCLC Patients Treated With Stereotactic Body Radiation Therapy

医学 无线电技术 阶段(地层学) 肿瘤科 内科学 放射科 生物 古生物学
作者
Zhicheng Jiao,Hongming Li,Ying Xiao,Jay F. Dorsey,Charles B. Simone,Steven J. Feigenberg,Gary D. Kao,Yong Fan
出处
期刊:International Journal of Radiation Oncology Biology Physics [Elsevier]
卷期号:112 (4): 1045-1054 被引量:24
标识
DOI:10.1016/j.ijrobp.2021.11.006
摘要

We develop a deep learning (DL) radiomics model and integrate it with circulating tumor cell (CTC) counts as a clinically useful prognostic marker for predicting recurrence outcomes of early-stage (ES) non-small cell lung cancer (NSCLC) patients treated with stereotactic body radiation therapy (SBRT).A cohort of 421 NSCLC patients was used to train a DL model for gleaning informative imaging features from computed tomography (CT) data. The learned imaging features were optimized on a cohort of 98 ES-NSCLC patients treated with SBRT for predicting individual patient recurrence risks by building DL models on CT data and clinical measures. These DL models were validated on the third cohort of 60 ES-NSCLC patients treated with SBRT to predict recurrent risks and stratify patients into subgroups with distinct outcomes in conjunction with CTC counts.The DL model obtained a concordance-index of 0.880 (95% confidence interval, 0.879-0.881). Patient subgroups with low and high DL risk scores had significantly different recurrence outcomes (P = 3.5e-04). The integration of DL risk scores and CTC measures identified 4 subgroups of patients with significantly different risks of recurrence (χ2 = 20.11, P = 1.6e-04). Patients with positive CTC measures were associated with increased risks of recurrence that were significantly different from patients with negative CTC measures (P = 0.0447).In this first-ever study integrating DL radiomics models and CTC counts, our results suggested that this integration improves patient stratification compared with either imagining data or CTC measures alone in predicting recurrence outcomes for patients treated with SBRT for ES-NSCLC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
燕子发布了新的文献求助10
1秒前
by完成签到 ,获得积分10
2秒前
2秒前
4秒前
511完成签到,获得积分10
4秒前
4秒前
淡淡夕阳发布了新的文献求助10
4秒前
oon完成签到,获得积分10
4秒前
优秀元枫完成签到,获得积分10
4秒前
满意的天完成签到 ,获得积分10
5秒前
5秒前
5秒前
6秒前
yali发布了新的文献求助20
6秒前
刘亦菲发布了新的文献求助30
6秒前
汉堡包应助灵巧的孤容采纳,获得10
6秒前
珍惜一切完成签到,获得积分10
6秒前
ZLQ发布了新的文献求助10
6秒前
温婉的小刺猬完成签到,获得积分10
7秒前
7秒前
longsay完成签到,获得积分10
7秒前
从容岩完成签到,获得积分10
8秒前
岁月情长完成签到,获得积分10
8秒前
现代飞鸟完成签到,获得积分10
8秒前
8秒前
8秒前
文艺沉鱼完成签到 ,获得积分10
9秒前
日月小发布了新的文献求助10
9秒前
食分子发布了新的文献求助10
9秒前
小晓完成签到,获得积分10
9秒前
木马上市完成签到,获得积分10
9秒前
一二发布了新的文献求助10
10秒前
爱看论文完成签到,获得积分10
10秒前
苏东方完成签到,获得积分10
10秒前
乘风完成签到,获得积分10
11秒前
芑璇完成签到,获得积分10
11秒前
54662133发布了新的文献求助10
12秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5337441
求助须知:如何正确求助?哪些是违规求助? 4474663
关于积分的说明 13925195
捐赠科研通 4369647
什么是DOI,文献DOI怎么找? 2400867
邀请新用户注册赠送积分活动 1393968
关于科研通互助平台的介绍 1365793