Integration of Deep Learning Radiomics and Counts of Circulating Tumor Cells Improves Prediction of Outcomes of Early Stage NSCLC Patients Treated With Stereotactic Body Radiation Therapy

医学 无线电技术 一致性 队列 放射外科 阶段(地层学) 肿瘤科 内科学 置信区间 放射治疗 肺癌 放射科 生物 古生物学
作者
Zhicheng Jiao,Hongming Li,Ying Xiao,Jay F. Dorsey,Charles B. Simone,Steven J. Feigenberg,Gary D. Kao,Yong Fan
出处
期刊:International Journal of Radiation Oncology Biology Physics [Elsevier]
卷期号:112 (4): 1045-1054 被引量:19
标识
DOI:10.1016/j.ijrobp.2021.11.006
摘要

We develop a deep learning (DL) radiomics model and integrate it with circulating tumor cell (CTC) counts as a clinically useful prognostic marker for predicting recurrence outcomes of early-stage (ES) non-small cell lung cancer (NSCLC) patients treated with stereotactic body radiation therapy (SBRT).A cohort of 421 NSCLC patients was used to train a DL model for gleaning informative imaging features from computed tomography (CT) data. The learned imaging features were optimized on a cohort of 98 ES-NSCLC patients treated with SBRT for predicting individual patient recurrence risks by building DL models on CT data and clinical measures. These DL models were validated on the third cohort of 60 ES-NSCLC patients treated with SBRT to predict recurrent risks and stratify patients into subgroups with distinct outcomes in conjunction with CTC counts.The DL model obtained a concordance-index of 0.880 (95% confidence interval, 0.879-0.881). Patient subgroups with low and high DL risk scores had significantly different recurrence outcomes (P = 3.5e-04). The integration of DL risk scores and CTC measures identified 4 subgroups of patients with significantly different risks of recurrence (χ2 = 20.11, P = 1.6e-04). Patients with positive CTC measures were associated with increased risks of recurrence that were significantly different from patients with negative CTC measures (P = 0.0447).In this first-ever study integrating DL radiomics models and CTC counts, our results suggested that this integration improves patient stratification compared with either imagining data or CTC measures alone in predicting recurrence outcomes for patients treated with SBRT for ES-NSCLC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
李伟发布了新的文献求助10
3秒前
3秒前
3秒前
4秒前
飞鸿踏雪泥完成签到 ,获得积分10
5秒前
夏天不回来完成签到,获得积分10
6秒前
8秒前
9秒前
9秒前
不懈奋进应助orchid采纳,获得30
10秒前
biye完成签到,获得积分10
11秒前
11秒前
皮皮发布了新的文献求助10
12秒前
共享精神应助Yara.H采纳,获得10
12秒前
Orange应助李伟采纳,获得10
13秒前
在阳光下完成签到 ,获得积分10
15秒前
18秒前
平常难破完成签到,获得积分10
20秒前
hhhh完成签到,获得积分10
20秒前
飞兰完成签到,获得积分10
22秒前
22秒前
23秒前
orchid完成签到,获得积分10
25秒前
cyy1226完成签到,获得积分10
26秒前
年年有余完成签到,获得积分10
26秒前
27秒前
七羽完成签到 ,获得积分10
28秒前
无聊的翠芙完成签到,获得积分10
28秒前
活力兔子完成签到,获得积分10
28秒前
SciGPT应助123shl采纳,获得10
29秒前
31秒前
喜悦的月光完成签到,获得积分20
33秒前
Cartry完成签到,获得积分10
34秒前
曲初雪完成签到,获得积分10
34秒前
lshl2000完成签到,获得积分10
35秒前
35秒前
Yara.H发布了新的文献求助10
39秒前
41秒前
脑洞疼应助凛冬采纳,获得10
42秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139963
求助须知:如何正确求助?哪些是违规求助? 2790850
关于积分的说明 7796798
捐赠科研通 2447191
什么是DOI,文献DOI怎么找? 1301745
科研通“疑难数据库(出版商)”最低求助积分说明 626313
版权声明 601194