Integration of Deep Learning Radiomics and Counts of Circulating Tumor Cells Improves Prediction of Outcomes of Early Stage NSCLC Patients Treated With Stereotactic Body Radiation Therapy

医学 无线电技术 阶段(地层学) 肿瘤科 内科学 放射科 生物 古生物学
作者
Zhicheng Jiao,Hongming Li,Ying Xiao,Jay F. Dorsey,Charles B. Simone,Steven J. Feigenberg,Gary D. Kao,Yong Fan
出处
期刊:International Journal of Radiation Oncology Biology Physics [Elsevier BV]
卷期号:112 (4): 1045-1054 被引量:24
标识
DOI:10.1016/j.ijrobp.2021.11.006
摘要

We develop a deep learning (DL) radiomics model and integrate it with circulating tumor cell (CTC) counts as a clinically useful prognostic marker for predicting recurrence outcomes of early-stage (ES) non-small cell lung cancer (NSCLC) patients treated with stereotactic body radiation therapy (SBRT).A cohort of 421 NSCLC patients was used to train a DL model for gleaning informative imaging features from computed tomography (CT) data. The learned imaging features were optimized on a cohort of 98 ES-NSCLC patients treated with SBRT for predicting individual patient recurrence risks by building DL models on CT data and clinical measures. These DL models were validated on the third cohort of 60 ES-NSCLC patients treated with SBRT to predict recurrent risks and stratify patients into subgroups with distinct outcomes in conjunction with CTC counts.The DL model obtained a concordance-index of 0.880 (95% confidence interval, 0.879-0.881). Patient subgroups with low and high DL risk scores had significantly different recurrence outcomes (P = 3.5e-04). The integration of DL risk scores and CTC measures identified 4 subgroups of patients with significantly different risks of recurrence (χ2 = 20.11, P = 1.6e-04). Patients with positive CTC measures were associated with increased risks of recurrence that were significantly different from patients with negative CTC measures (P = 0.0447).In this first-ever study integrating DL radiomics models and CTC counts, our results suggested that this integration improves patient stratification compared with either imagining data or CTC measures alone in predicting recurrence outcomes for patients treated with SBRT for ES-NSCLC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
单薄碧灵完成签到 ,获得积分10
2秒前
年年完成签到 ,获得积分10
3秒前
xmqaq完成签到,获得积分10
5秒前
温梦花雨完成签到 ,获得积分10
8秒前
8秒前
orixero应助香菜大姐采纳,获得10
12秒前
墨然然完成签到 ,获得积分10
18秒前
Skywalk满天星完成签到,获得积分10
18秒前
活泼的烙完成签到 ,获得积分10
21秒前
seven_yao完成签到,获得积分10
21秒前
DY完成签到,获得积分10
22秒前
失眠的向日葵完成签到 ,获得积分10
24秒前
bill完成签到,获得积分10
25秒前
25秒前
快乐的小木虫完成签到,获得积分10
26秒前
zhangyx完成签到 ,获得积分10
27秒前
ECHO完成签到,获得积分10
27秒前
Sun_Chen完成签到,获得积分10
27秒前
阿德里亚诺完成签到,获得积分10
28秒前
量子星尘发布了新的文献求助10
29秒前
小刘哥加油完成签到 ,获得积分10
32秒前
伴奏小胖完成签到 ,获得积分10
35秒前
songyu完成签到,获得积分10
36秒前
依然完成签到,获得积分10
38秒前
Tina完成签到 ,获得积分10
38秒前
51秒前
h w wang完成签到,获得积分10
55秒前
Dream完成签到,获得积分0
56秒前
Anna完成签到 ,获得积分10
56秒前
56秒前
点点完成签到 ,获得积分10
57秒前
Hunter完成签到,获得积分10
57秒前
lydiaabc完成签到,获得积分10
1分钟前
1分钟前
求知小生完成签到,获得积分10
1分钟前
1分钟前
1分钟前
梨里完成签到,获得积分10
1分钟前
冯不言发布了新的文献求助10
1分钟前
1分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4008763
求助须知:如何正确求助?哪些是违规求助? 3548409
关于积分的说明 11298823
捐赠科研通 3283064
什么是DOI,文献DOI怎么找? 1810290
邀请新用户注册赠送积分活动 886000
科研通“疑难数据库(出版商)”最低求助积分说明 811220