医学
无线电技术
一致性
队列
放射外科
阶段(地层学)
肿瘤科
内科学
置信区间
放射治疗
肺癌
放射科
生物
古生物学
作者
Zhicheng Jiao,Hongming Li,Ying Xiao,Jay F. Dorsey,Charles B. Simone,Steven J. Feigenberg,Gary D. Kao,Yong Fan
标识
DOI:10.1016/j.ijrobp.2021.11.006
摘要
We develop a deep learning (DL) radiomics model and integrate it with circulating tumor cell (CTC) counts as a clinically useful prognostic marker for predicting recurrence outcomes of early-stage (ES) non-small cell lung cancer (NSCLC) patients treated with stereotactic body radiation therapy (SBRT).A cohort of 421 NSCLC patients was used to train a DL model for gleaning informative imaging features from computed tomography (CT) data. The learned imaging features were optimized on a cohort of 98 ES-NSCLC patients treated with SBRT for predicting individual patient recurrence risks by building DL models on CT data and clinical measures. These DL models were validated on the third cohort of 60 ES-NSCLC patients treated with SBRT to predict recurrent risks and stratify patients into subgroups with distinct outcomes in conjunction with CTC counts.The DL model obtained a concordance-index of 0.880 (95% confidence interval, 0.879-0.881). Patient subgroups with low and high DL risk scores had significantly different recurrence outcomes (P = 3.5e-04). The integration of DL risk scores and CTC measures identified 4 subgroups of patients with significantly different risks of recurrence (χ2 = 20.11, P = 1.6e-04). Patients with positive CTC measures were associated with increased risks of recurrence that were significantly different from patients with negative CTC measures (P = 0.0447).In this first-ever study integrating DL radiomics models and CTC counts, our results suggested that this integration improves patient stratification compared with either imagining data or CTC measures alone in predicting recurrence outcomes for patients treated with SBRT for ES-NSCLC.
科研通智能强力驱动
Strongly Powered by AbleSci AI