计算机科学
引用
成对比较
图形
情报检索
知识图
人工神经网络
数据科学
人工智能
机器学习
理论计算机科学
万维网
作者
XieQianqian,ZhuYutao,HuangJimin,DuPan,NieJian-Yun
出处
期刊:ACM Transactions on Information Systems
日期:2021-11-17
卷期号:40 (3): 1-30
摘要
Due to the overload of published scientific articles, citation recommendation has long been a critical research problem for automatically recommending the most relevant citations of given articles. Relational topic models (RTMs) have shown promise on citation prediction via joint modeling of document contents and citations. However, existing RTMs can only capture pairwise or direct (first-order) citation relationships among documents. The indirect (high-order) citation links have been explored in graph neural network–based methods, but these methods suffer from the well-known explainability problem. In this article, we propose a model called Graph Neural Collaborative Topic Model that takes advantage of both relational topic models and graph neural networks to capture high-order citation relationships and to have higher explainability due to the latent topic semantic structure. Experiments on three real-world citation datasets show that our model outperforms several competitive baseline methods on citation recommendation. In addition, we show that our approach can learn better topics than the existing approaches. The recommendation results can be well explained by the underlying topics.
科研通智能强力驱动
Strongly Powered by AbleSci AI