Graph Neural Collaborative Topic Model for Citation Recommendation

计算机科学 引用 成对比较 图形 情报检索 知识图 人工神经网络 数据科学 人工智能 机器学习 理论计算机科学 万维网
作者
XieQianqian,ZhuYutao,HuangJimin,DuPan,NieJian-Yun
出处
期刊:ACM Transactions on Information Systems [Association for Computing Machinery]
卷期号:40 (3): 1-30
标识
DOI:10.1145/3473973
摘要

Due to the overload of published scientific articles, citation recommendation has long been a critical research problem for automatically recommending the most relevant citations of given articles. Relational topic models (RTMs) have shown promise on citation prediction via joint modeling of document contents and citations. However, existing RTMs can only capture pairwise or direct (first-order) citation relationships among documents. The indirect (high-order) citation links have been explored in graph neural network–based methods, but these methods suffer from the well-known explainability problem. In this article, we propose a model called Graph Neural Collaborative Topic Model that takes advantage of both relational topic models and graph neural networks to capture high-order citation relationships and to have higher explainability due to the latent topic semantic structure. Experiments on three real-world citation datasets show that our model outperforms several competitive baseline methods on citation recommendation. In addition, we show that our approach can learn better topics than the existing approaches. The recommendation results can be well explained by the underlying topics.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美世界应助aulinwl采纳,获得30
刚刚
lily发布了新的文献求助10
2秒前
2秒前
2秒前
YuZhang发布了新的文献求助10
3秒前
sssaasa发布了新的文献求助10
3秒前
wxy完成签到,获得积分10
3秒前
4秒前
香蕉觅云应助淡淡夕阳采纳,获得10
4秒前
鲸鱼发布了新的文献求助10
5秒前
从容小鸽子完成签到,获得积分10
6秒前
7秒前
笑一笑发布了新的文献求助10
7秒前
Coldpal完成签到,获得积分10
7秒前
李梦茹发布了新的文献求助10
7秒前
8秒前
哇哇哇哇发布了新的文献求助10
8秒前
9秒前
充电宝应助李铮采纳,获得10
9秒前
打打应助JasVe采纳,获得50
10秒前
sssaasa完成签到,获得积分20
11秒前
刘荣鑫完成签到,获得积分10
11秒前
饱满香彤完成签到 ,获得积分10
11秒前
量子星尘发布了新的文献求助10
11秒前
顾矜应助李梦茹采纳,获得10
11秒前
wanci应助Ryuichi采纳,获得10
11秒前
violet完成签到,获得积分10
12秒前
MeM发布了新的文献求助10
12秒前
传奇3应助苹果宝宝采纳,获得10
12秒前
量子星尘发布了新的文献求助10
13秒前
嘻嘻关注了科研通微信公众号
14秒前
14秒前
14秒前
在水一方应助淡淡夕阳采纳,获得10
15秒前
小二郎应助kk采纳,获得10
15秒前
万能图书馆应助小只采纳,获得10
16秒前
科研通AI2S应助xiao采纳,获得10
16秒前
17秒前
17秒前
科目三应助wcz采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
the Oxford Guide to the Bantu Languages 3000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5762020
求助须知:如何正确求助?哪些是违规求助? 5533545
关于积分的说明 15401764
捐赠科研通 4898295
什么是DOI,文献DOI怎么找? 2634801
邀请新用户注册赠送积分活动 1582925
关于科研通互助平台的介绍 1538165