材料科学
硼化物
制作
维氏硬度试验
电阻率和电导率
硼
蜂巢
复合材料
纳米技术
微观结构
电气工程
病理
工程类
有机化学
化学
替代医学
医学
作者
Bo Zhao,Xiaojun Wang,Linchao Yu,Yunxian Liu,Xin Chen,Bingchao Yang,Guochun Yang,Shoutao Zhang,Lin Gu,Xiaobing Liu
标识
DOI:10.1002/adfm.202110872
摘要
Abstract The design and fabrication of novel hard materials with excellent electrical conductivity is attractive in scientific and technological application under extreme conditions. Metal borides have brought substantial interest for decades in material science because of their strong covalent BB bonding network for intrinsic incompressibility and MM bonding for electron transportation. Here the successful synthesis of a novel hard alkali metal boride as NaB 4 with high thermal stability (873 K) and metallic behaviors is reported. The relatively low synthetic P/T conditions (lowest at 1.5 GPa and 1000 K) enable the easy fabrication of large bulk materials (several centimeters in diameter). The studies reveal that the Vickers hardness value of NaB 4 can reach up to 26 GPa, associated with superior incompressibility along (001) direction of honeycomb‐like boron structure that exhibits the highest shear modulus up to 96 GPa for borides. The NaB 4 structure undergoes an interesting metallic‐semiconducting transition under compression up to 61 GPa. This new form of hard metal boride material with pressure‐tunable electrical properties enables the development of industrial applications as future electrical devices.
科研通智能强力驱动
Strongly Powered by AbleSci AI