High resolution histopathology image generation and segmentation through adversarial training

人工智能 计算机科学 分割 模式识别(心理学) 图像分割 比例(比率) 图像分辨率 计算机视觉 量子力学 物理
作者
Wenyuan Li,Jiayun Li,Jennifer Polson,Zichen Wang,William Speier,Corey Arnold
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:75: 102251-102251 被引量:27
标识
DOI:10.1016/j.media.2021.102251
摘要

Semantic segmentation of histopathology images can be a vital aspect of computer-aided diagnosis, and deep learning models have been effectively applied to this task with varying levels of success. However, their impact has been limited due to the small size of fully annotated datasets. Data augmentation is one avenue to address this limitation. Generative Adversarial Networks (GANs) have shown promise in this respect, but previous work has focused mostly on classification tasks applied to MR and CT images, both of which have lower resolution and scale than histopathology images. There is limited research that applies GANs as a data augmentation approach for large-scale image semantic segmentation, which requires high-quality image-mask pairs. In this work, we propose a multi-scale conditional GAN for high-resolution, large-scale histopathology image generation and segmentation. Our model consists of a pyramid of GAN structures, each responsible for generating and segmenting images at a different scale. Using semantic masks, the generative component of our model is able to synthesize histopathology images that are visually realistic. We demonstrate that these synthesized images along with their masks can be used to boost segmentation performance, especially in the semi-supervised scenario.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hhh完成签到,获得积分10
刚刚
JamesPei应助诗轩采纳,获得10
1秒前
TT完成签到,获得积分10
2秒前
reck发布了新的文献求助10
2秒前
3秒前
DK发布了新的文献求助10
3秒前
英俊的铭应助ren采纳,获得10
3秒前
圈圈发布了新的文献求助10
3秒前
乐乱完成签到 ,获得积分10
4秒前
415484112完成签到,获得积分10
5秒前
yinyi发布了新的文献求助10
5秒前
5秒前
赵一丁完成签到,获得积分10
6秒前
成就绮琴完成签到 ,获得积分10
6秒前
Chen完成签到,获得积分10
6秒前
huanfid完成签到 ,获得积分10
6秒前
6秒前
6秒前
7秒前
Stitch完成签到 ,获得积分10
7秒前
7秒前
眯眯眼的冷珍完成签到,获得积分10
7秒前
bjyx完成签到,获得积分10
7秒前
reck完成签到,获得积分10
8秒前
pharmstudent发布了新的文献求助30
8秒前
小田完成签到,获得积分10
8秒前
小喵发布了新的文献求助10
9秒前
FashionBoy应助毛毛哦啊采纳,获得10
9秒前
Lucas应助Chen采纳,获得10
10秒前
强健的蚂蚁完成签到,获得积分20
10秒前
小宇发布了新的文献求助10
10秒前
斜杠武完成签到,获得积分20
10秒前
11秒前
伞兵龙发布了新的文献求助10
11秒前
RC_Wang应助科研小民工采纳,获得10
11秒前
sanben完成签到,获得积分10
11秒前
11秒前
_蝴蝶小姐完成签到,获得积分10
12秒前
诗轩发布了新的文献求助10
13秒前
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672