CC-99282 is a Novel Cereblon (CRBN) E3 Ligase Modulator (CELMoD) Agent with Enhanced Tumoricidal Activity in Preclinical Models of Lymphoma

小脑 癌症研究 来那度胺 慢性淋巴细胞白血病 淋巴瘤 威尼斯人 泛素连接酶 滤泡性淋巴瘤 医学 白血病 生物 免疫学 泛素 多发性骨髓瘤 生物化学 基因
作者
Soraya Carrancio,Lynda M. Groocock,Preethi Janardhanan,Diana Jankeel,Ryan Galasso,Carla Guarinós,Rama Krishna Narla,Matthew Groza,Jim Leisten,Daniel W. Pierce,Mark Rolfe,Antonia López-Girona
出处
期刊:Blood [American Society of Hematology]
卷期号:138 (Supplement 1): 1200-1200 被引量:13
标识
DOI:10.1182/blood-2021-148068
摘要

Abstract CC-99282 is a novel, oral CELMoD ® agent currently under investigation in phase 1 clinical studies in patients with relapsed or refractory (R/R) non-Hodgkin lymphomas (NHL) and chronic lymphocytic leukemia (CLL)/small lymphocytic lymphoma (SLL). Mechanistically, CC-99282 interacts with the CRL4 CRBN E3 ubiquitin ligase substrate receptor CRBN to induce recruitment and ubiquitin-mediated proteasomal degradation of transcription factors Ikaros and Aiolos. The design intent for CC-99282 included efficient absorption, deep tissue distribution, and prolonged exposure to optimize activity in bulky lymphoma lesions. Recently, we reported that CC-99282 shows potent antitumor activity in different preclinical models of diffuse large B cell lymphoma (DLBCL; Lopez-Girona, et al. Hematol Oncol. 2021). Here, we provide an expanded analysis of CC-99282 activity as a monotherapy, as well as examine its synergistic activity with anti-CD20 antibody treatment, in preclinical models of NHL including DLBCL and follicular lymphoma (FL). Compared with existing agents targeting Ikaros/Aiolos that show activity in hematologic malignancies, such as lenalidomide, avadomide, and iberdomide (CC-220), CC-99282 induced a more rapid, deep, and sustained degradation of Ikaros/Aiolos, causing derepression of cyclin-dependent kinase (CDK) inhibitors and interferon-stimulated genes (IRF7, IFIT3, and DDX58), and the reduction of the highly critical oncogenic factors c-Myc and IRF4. These molecular changes were followed by potent, 10- to 100-fold enhanced, autonomous cell killing and induction of apoptosis (Figure). Our results show that these effects were independent of the cell of origin (activated B cell [ABC; TMD8 cell line], germinal center B cell [GCB; WSU-DLCL2 cell line], or primary mediastinal B cell lymphoma [PMBL] subtypes of DLBCL) or presence of high-risk chromosomal translocations (MYC, BCL2, and/or BCL6), as observed in a panel of 36 lymphoma cell lines that included DLBCL and FL cell lines. In vivo, CC-99282 demonstrated robust tissue distribution that favored target tissues and exhibited antitumor activity resulting in improved tumor regression and tumor-free animals in several lymphoma xenograft models, including an intracranial xenograft model. This strong antitumor activity was observed using various continuous and intermittent dosing paradigms. The potent, direct autonomous cell-killing activity of CC-99282 was augmented when CC-99282 was combined with the anti-CD20 antibody rituximab. In vitro combination studies of CC-99282 with rituximab in lymphoma cell lines demonstrated enhanced cell killing by human natural killer (NK) cells, macrophage-mediated phagocytosis, antibody-dependent cellular cytotoxicity (ADCC), and antibody-dependent cellular phagocytosis (ADCP). In FL and DLBCL cell lines, we showed that the combination of CC-99282 with rituximab resulted in increases in both NK-mediated ADCC and macrophage-mediated ADCP of up to 20% compared with rituximab treatment alone. In vivo, combination treatment with CC-99282 and rituximab induced dose-dependent tumor growth inhibition in WSU-DLCL2 and RL (FL) xenograft models. In the WSU-DLCL2 model, CC-99282 (1 mg/kg) or rituximab (10 mg/kg) monotherapy resulted in modest tumor growth inhibition, whereas the combination of CC-99282 (1 mg/kg) and rituximab (10 mg/kg) resulted in tumor regression in 100% of animals. Similar results were obtained in FL xenograft models using the RL cell line, where combinations of CC-99282 (1 mg/kg) with rituximab (25 mg/kg) induced complete tumor regression in 100% of animals. In conclusion, CC-99282 is a novel CELMoD agent with an improved substrate degradation profile compared with existing Ikaros/Aiolos-degrading agents. CC-99282 demonstrated enhanced antiproliferative and apoptotic activities across a broad range of lymphoma cells and a robust distribution profile that favors target tissues such as lymphoid organs. In addition, CC-99282 acts synergistically in combination with anti-CD20 monoclonal antibody treatment. Collectively, these data support the clinical investigation of CC-99282 as monotherapy and in combination with rituximab in patients with R/R NHL. Figure 1 Figure 1. Disclosures Carrancio: Bristol Myers Squibb: Current Employment, Current equity holder in publicly-traded company. Groocock: Bristol Myers Squibb: Current Employment, Current equity holder in publicly-traded company. Janardhanan: Bristol Myers Squibb: Current Employment, Current equity holder in publicly-traded company. Jankeel: Bristol Myers Squibb: Current Employment, Current equity holder in publicly-traded company. Galasso: Ryan Galasso: Current Employment, Current equity holder in publicly-traded company. Guarinos: Bristol Myers Squibb: Current Employment. Narla: Bristol Myers Squibb: Current Employment. Groza: Bristol Myers Squibb: Current Employment. Leisten: Bristol Myers Squibb: Current Employment, Current equity holder in publicly-traded company. Pierce: Bristol Myers Squibb: Current Employment, Current equity holder in publicly-traded company. Rolfe: Bristol Myers Squibb: Current Employment, Current equity holder in publicly-traded company. Lopez-Girona: Bristol Myers Squibb: Current Employment, Current equity holder in publicly-traded company.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
吴舟完成签到,获得积分10
1秒前
光光发电发布了新的文献求助10
3秒前
充电宝应助兴奋元冬采纳,获得10
4秒前
valere完成签到 ,获得积分10
5秒前
theo完成签到 ,获得积分10
6秒前
fuerfuer发布了新的文献求助30
6秒前
CodeCraft应助insissst采纳,获得10
6秒前
7秒前
请叫我过儿完成签到,获得积分10
7秒前
8秒前
8秒前
10秒前
libingxuan发布了新的文献求助10
11秒前
不开心完成签到,获得积分10
12秒前
爆米花应助Medicine采纳,获得10
13秒前
13秒前
月月鸟发布了新的文献求助10
14秒前
YING发布了新的文献求助10
15秒前
15秒前
西瓜完成签到 ,获得积分10
16秒前
16秒前
Bob2发布了新的文献求助10
17秒前
17秒前
17秒前
17秒前
耶啵8825发布了新的文献求助10
18秒前
桐桐应助阿卡波糖拌饭采纳,获得10
20秒前
flag发布了新的文献求助10
20秒前
辛勤的花瓣完成签到 ,获得积分10
21秒前
了了发布了新的文献求助10
21秒前
22秒前
111发布了新的文献求助10
22秒前
光光发电完成签到,获得积分10
23秒前
23秒前
23秒前
大问西发布了新的文献求助10
24秒前
25秒前
Medical天完成签到,获得积分10
26秒前
Saluzi发布了新的文献求助10
27秒前
鳕鱼堡发布了新的文献求助20
27秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
The Healthy Socialist Life in Maoist China 600
The Vladimirov Diaries [by Peter Vladimirov] 600
Data Structures and Algorithms in Java 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3268187
求助须知:如何正确求助?哪些是违规求助? 2907706
关于积分的说明 8342872
捐赠科研通 2578085
什么是DOI,文献DOI怎么找? 1401654
科研通“疑难数据库(出版商)”最低求助积分说明 655107
邀请新用户注册赠送积分活动 634192