Deep learning for the prediction of early on-treatment response in metastatic colorectal cancer from serial medical imaging

结直肠癌 医学 肿瘤科 内科学 医学影像学 癌症 医学物理学 放射科
作者
Lin Lü,Laurent Dercle,Binsheng Zhao,Lawrence H. Schwartz
出处
期刊:Nature Communications [Springer Nature]
卷期号:12 (1) 被引量:62
标识
DOI:10.1038/s41467-021-26990-6
摘要

In current clinical practice, tumor response assessment is usually based on tumor size change on serial computerized tomography (CT) scan images. However, evaluation of tumor response to anti-vascular endothelial growth factor therapies in metastatic colorectal cancer (mCRC) is limited because morphological change in tumor may occur earlier than tumor size change. Here we present an analysis utilizing a deep learning (DL) network to characterize tumor morphological change for response assessment in mCRC patients. We retrospectively analyzed 1,028 mCRC patients who were prospectively included in the VELOUR trial (NCT00561470). We found that DL network was able to predict early on-treatment response in mCRC and showed better performance than its size-based counterpart with C-Index: 0.649 (95% CI: 0.619,0.679) vs. 0.627 (95% CI: 0.567,0.638), p = 0.009, z-test. The integration of DL network with size-based methodology could further improve the prediction performance to C-Index: 0.694 (95% CI: 0.661,0.720), which was superior to size/DL-based-only models (all p < 0.001, z-test). Our study suggests that DL network could provide a noninvasive mean for quantitative and comprehensive characterization of tumor morphological change, which may potentially benefit personalized early on-treatment decision making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
坐看云起时完成签到 ,获得积分20
1秒前
aaronzhu1995发布了新的文献求助30
1秒前
Hello应助豌豆采纳,获得10
1秒前
小蘑菇应助苗大侠采纳,获得10
1秒前
yu发布了新的文献求助10
2秒前
CC完成签到,获得积分10
2秒前
SYLH应助一汪采纳,获得10
2秒前
yzy发布了新的文献求助10
2秒前
3秒前
XiaoYuuu完成签到,获得积分10
4秒前
4秒前
小王啵啵完成签到 ,获得积分10
4秒前
5秒前
夏山发布了新的文献求助10
5秒前
9秒前
闫磊发布了新的文献求助10
9秒前
明天过后发布了新的文献求助10
9秒前
zhilanyao发布了新的文献求助30
10秒前
爆米花应助榛苓采纳,获得10
10秒前
10秒前
10秒前
10秒前
fzd完成签到,获得积分10
10秒前
11秒前
kk发布了新的文献求助10
11秒前
11秒前
莫非完成签到,获得积分10
12秒前
syiimo完成签到 ,获得积分10
12秒前
在水一方应助嗯嗯嗯嗯采纳,获得10
13秒前
清秀伟宸发布了新的文献求助10
14秒前
Will完成签到,获得积分10
14秒前
Js发布了新的文献求助10
15秒前
Owen应助wlxzy采纳,获得10
15秒前
wrrrrr发布了新的文献求助10
16秒前
苗大侠发布了新的文献求助10
16秒前
16秒前
shenzz完成签到,获得积分10
17秒前
拉了发布了新的文献求助10
17秒前
明天过后完成签到,获得积分10
17秒前
h8h9完成签到,获得积分10
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
The Laschia-complex (Basidiomycetes) 600
Interest Rate Modeling. Volume 3: Products and Risk Management 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3541156
求助须知:如何正确求助?哪些是违规求助? 3118348
关于积分的说明 9335388
捐赠科研通 2816304
什么是DOI,文献DOI怎么找? 1548299
邀请新用户注册赠送积分活动 721471
科研通“疑难数据库(出版商)”最低求助积分说明 712690