植被(病理学)
合成孔径雷达
植被指数
生物量(生态学)
遥感
雷达
环境科学
增强植被指数
索引(排版)
含水量
归一化差异植被指数
数学
计算机科学
农学
叶面积指数
地质学
生物
电信
万维网
病理
岩土工程
医学
作者
Narayanarao Bhogapurapu,Subhadip Dey,Dipankar Mandal,Avik Bhattacharya,Y. S. Rao
标识
DOI:10.1109/igarss47720.2021.9554351
摘要
Accurate and high-resolution spatio-temporal information on wheat growth is an essential factor for agronomic management and grain yield estimation. In this study, we propose a new vegetation descriptor from the Sentinel-1 Synthetic Aperture Radar (SAR) GRD data for monitoring the growth stages of wheat. We also assess the performance of the proposed vegetation descriptor for estimating wheat biophysical parameters: Plant Area Index (PAI), Dry Biomass (DB), and Vegetation Water Content (VWC) over the Soil Moisture Active Passive Validation Experiment 2016 (SMAPVEX16-MB) test site in Manitoba, Canada. The proposed vegetation descriptor produced good correlation $(R^{2})$ with the biophysical parameters of wheat: 0.63 (PAI), 0.64 (DB), and 0.57 (VWC) compared to $\sigma_{\text{VH}}^{\mathrm{o}}/\sigma_{\text{VV}}^{\mathrm{o}}$ and the dual-pol Radar Vegetation Index (RVI).
科研通智能强力驱动
Strongly Powered by AbleSci AI