An enhanced whale optimization algorithm for large scale optimization problems

鲸鱼 计算机科学 数学优化 最优化问题 利用 元优化 优化算法 算法 元启发式 水准点(测量) 趋同(经济学) 数学 地理 生物 计算机安全 大地测量学 渔业 经济增长 经济
作者
Sanjoy Chakraborty,Apu Kumar Saha,Ratul Chakraborty,Moumita Saha
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:233: 107543-107543 被引量:109
标识
DOI:10.1016/j.knosys.2021.107543
摘要

Whale optimization algorithm was developed based on the prey-catching characteristics of the humpback whales. Due to its simple structure and efficiency, the researchers employed the algorithm to address numerous disciplines’ numerous problems. The profound analysis of the whale optimization algorithm discloses that the algorithm suffers from low exploration ability, lesser accuracy, and early convergence. Additionally, performance of the whale optimization algorithm and most of its variants in high-dimensional optimization problems is not satisfactory. This study proposes a new variant with several modifications to the basic whale optimization algorithm to solve high-dimensional problems. A unique selection parameter is introduced in the whale optimization algorithm to balance the algorithm’s global and local search phase. The co-efficient vectors A and C are modified and used effectively to explore and exploit the search region better. In the exploration phase, random movement is allowed to reduce the computational burden of the algorithm. An inertia weight is introduced in the exploitation phase for exhaustive search nearby the best solution. The proposed algorithm evaluates twenty-five benchmark functions using dimensions 100, 500, 1000, and 2000 and compared the results with the whale optimization algorithm and its variants. The estimated outcomes are also compared with seven basic metaheuristic algorithms. Finally, statistical analysis, complexity analysis, and convergence analysis are performed to establish the algorithm’s efficacy. All the test result suggests better performance of the proposed algorithm on higher-dimensional problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
小王完成签到 ,获得积分10
2秒前
聪聪完成签到,获得积分10
2秒前
852应助jcae123采纳,获得10
2秒前
2秒前
3秒前
Nuyoah发布了新的文献求助10
5秒前
甜崽完成签到,获得积分10
5秒前
6秒前
深情安青应助上善若水采纳,获得10
6秒前
zzq778发布了新的文献求助10
6秒前
10秒前
MT发布了新的文献求助20
10秒前
领导范儿应助凉生采纳,获得10
10秒前
小二郎应助甜崽采纳,获得10
11秒前
11秒前
搜集达人应助dlm采纳,获得10
12秒前
13秒前
jcae123发布了新的文献求助10
14秒前
CipherSage应助专注雁桃采纳,获得10
14秒前
16秒前
日升月发布了新的文献求助10
18秒前
18秒前
CipherSage应助蒸馏水采纳,获得10
18秒前
大萨达发布了新的文献求助10
20秒前
20秒前
cuddles完成签到,获得积分10
21秒前
22秒前
jcae123完成签到,获得积分10
22秒前
DR.V完成签到,获得积分20
22秒前
23秒前
Wellnemo发布了新的文献求助10
25秒前
小兔完成签到,获得积分20
25秒前
粉色小妖精完成签到,获得积分10
25秒前
听话的蜡烛完成签到,获得积分10
26秒前
lancer发布了新的文献求助30
27秒前
NexusExplorer应助WBW采纳,获得10
27秒前
xylxyl完成签到,获得积分10
28秒前
DR.V发布了新的文献求助10
28秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3233579
求助须知:如何正确求助?哪些是违规求助? 2880164
关于积分的说明 8214083
捐赠科研通 2547585
什么是DOI,文献DOI怎么找? 1377081
科研通“疑难数据库(出版商)”最低求助积分说明 647736
邀请新用户注册赠送积分活动 623154