已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Estimating 2013–2019 NO2 exposure with high spatiotemporal resolution in China using an ensemble model

环境科学 缩小尺度 空气质量指数 CMAQ 气象学 化学输运模型 大气科学 臭氧监测仪 卫星 二氧化氮 比例(比率) 气溶胶 空气污染 降水 地理 地图学 地质学 工程类 航空航天工程 有机化学 化学
作者
Conghong Huang,Kang Sun,Jianlin Hu,Tao Xue,Hao Xu,Meng Wang
出处
期刊:Environmental Pollution [Elsevier]
卷期号:292: 118285-118285 被引量:42
标识
DOI:10.1016/j.envpol.2021.118285
摘要

Air pollution has become a major issue in China, especially for traffic-related pollutants such as nitrogen dioxide (NO2). Current studies in China at the national scale were less focused on NO2 exposure and consequent health effects than fine particulate exposure, mainly due to a lack of high-quality exposure models for accurate NO2 predictions over a long period. We developed an advanced modeling framework that incorporated multisource, high-quality predictor data (e.g., satellite observations [Ozone Monitoring Instrument NO2, TROPOspheric Monitoring Instrument NO2, and Multi-Angle Implementation of Atmospheric Correction aerosol optical depth], chemical transport model simulations, high-resolution geographical variables) and three independent machine learning algorithms into an ensemble model. The model contains three stages: (1) filling missing satellite data; (2) building an ensemble model and predicting daily NO2 concentrations from 2013 to 2019 across China at 1×1 km2 resolution; (3) downscaling the predictions to finer resolution (100 m) at the urban scale. Our model achieves a high performance in terms of cross-validation to assess the agreement of the overall (R2 = 0.72) and the spatial (R2 = 0.85) variations of the NO2 predictions over the observations. The model performance remains moderately good when the predictions are extrapolated to the previous years without any monitoring data (CV R2 > 0.68) or regions far away from monitors (CV R2 > 0.63). We identified a clear decreasing trend of NO2 exposure from 2013 to 2019 across the country with the largest reduction in suburban and rural areas. Our downscaled model further improved the prediction ability by 4%-14% in some megacities and captured substantial NO2 variations within 1-km grids in the urban areas, especially near major roads. Our model provides flexibility at both temporal and spatial scales and can be applied to exposure assessment and epidemiological studies with various study domains (e.g., national or citywide) and settings (e.g., long-term and short-term).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
沙脑完成签到 ,获得积分10
3秒前
6秒前
6秒前
樱桃小贩完成签到,获得积分10
8秒前
乔达摩完成签到 ,获得积分10
10秒前
忧郁凡灵完成签到,获得积分10
10秒前
今后应助songsong668采纳,获得10
15秒前
ssjjzhou完成签到 ,获得积分10
16秒前
22秒前
李小萌发布了新的文献求助20
25秒前
CodeCraft应助Polymer72采纳,获得30
26秒前
Flash完成签到 ,获得积分10
28秒前
852应助熊有鹏采纳,获得10
28秒前
31秒前
怕黑钢笔完成签到 ,获得积分10
32秒前
魔幻的访云完成签到 ,获得积分10
32秒前
33秒前
34秒前
大模型应助郑qqqq采纳,获得10
34秒前
CodeCraft应助haobuweiju采纳,获得10
35秒前
兮兮完成签到,获得积分10
35秒前
兮兮发布了新的文献求助10
38秒前
zjkzh完成签到 ,获得积分10
38秒前
熊有鹏发布了新的文献求助10
40秒前
冰棒比冰冰完成签到 ,获得积分10
41秒前
田様应助长情如豹采纳,获得10
41秒前
xiaoshuwang完成签到,获得积分10
43秒前
顺利寄文完成签到 ,获得积分10
44秒前
LL完成签到 ,获得积分10
45秒前
tomorrow505应助难过小懒虫采纳,获得10
45秒前
oldblack完成签到,获得积分10
46秒前
乔达摩悉达多完成签到 ,获得积分10
46秒前
47秒前
桐桐应助荣耀采纳,获得10
47秒前
48秒前
wwy完成签到,获得积分10
48秒前
48秒前
48秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
Research on managing groups and teams 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3330276
求助须知:如何正确求助?哪些是违规求助? 2959850
关于积分的说明 8597504
捐赠科研通 2638376
什么是DOI,文献DOI怎么找? 1444303
科研通“疑难数据库(出版商)”最低求助积分说明 669096
邀请新用户注册赠送积分活动 656628