亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Estimating 2013–2019 NO2 exposure with high spatiotemporal resolution in China using an ensemble model

环境科学 缩小尺度 空气质量指数 CMAQ 气象学 化学输运模型 大气科学 臭氧监测仪 卫星 二氧化氮 比例(比率) 气溶胶 空气污染 降水 地理 地图学 地质学 工程类 航空航天工程 有机化学 化学
作者
Conghong Huang,Kang Sun,Jianlin Hu,Tao Xue,Hao Xu,Meng Wang
出处
期刊:Environmental Pollution [Elsevier BV]
卷期号:292: 118285-118285 被引量:42
标识
DOI:10.1016/j.envpol.2021.118285
摘要

Air pollution has become a major issue in China, especially for traffic-related pollutants such as nitrogen dioxide (NO2). Current studies in China at the national scale were less focused on NO2 exposure and consequent health effects than fine particulate exposure, mainly due to a lack of high-quality exposure models for accurate NO2 predictions over a long period. We developed an advanced modeling framework that incorporated multisource, high-quality predictor data (e.g., satellite observations [Ozone Monitoring Instrument NO2, TROPOspheric Monitoring Instrument NO2, and Multi-Angle Implementation of Atmospheric Correction aerosol optical depth], chemical transport model simulations, high-resolution geographical variables) and three independent machine learning algorithms into an ensemble model. The model contains three stages: (1) filling missing satellite data; (2) building an ensemble model and predicting daily NO2 concentrations from 2013 to 2019 across China at 1×1 km2 resolution; (3) downscaling the predictions to finer resolution (100 m) at the urban scale. Our model achieves a high performance in terms of cross-validation to assess the agreement of the overall (R2 = 0.72) and the spatial (R2 = 0.85) variations of the NO2 predictions over the observations. The model performance remains moderately good when the predictions are extrapolated to the previous years without any monitoring data (CV R2 > 0.68) or regions far away from monitors (CV R2 > 0.63). We identified a clear decreasing trend of NO2 exposure from 2013 to 2019 across the country with the largest reduction in suburban and rural areas. Our downscaled model further improved the prediction ability by 4%-14% in some megacities and captured substantial NO2 variations within 1-km grids in the urban areas, especially near major roads. Our model provides flexibility at both temporal and spatial scales and can be applied to exposure assessment and epidemiological studies with various study domains (e.g., national or citywide) and settings (e.g., long-term and short-term).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
111111111完成签到,获得积分10
9秒前
yyds完成签到,获得积分0
29秒前
天外来物完成签到 ,获得积分10
54秒前
58秒前
1分钟前
Ava应助里昂义务采纳,获得10
1分钟前
欣喜绮玉发布了新的文献求助10
1分钟前
2分钟前
荔枝发布了新的文献求助10
2分钟前
2分钟前
头孢西丁完成签到 ,获得积分10
2分钟前
Orange应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
3分钟前
Krim完成签到 ,获得积分10
3分钟前
牛八先生完成签到,获得积分10
3分钟前
Sunziy完成签到,获得积分10
4分钟前
韩雨桐完成签到 ,获得积分10
4分钟前
fa完成签到,获得积分10
5分钟前
5分钟前
不想干活应助李丹采纳,获得20
6分钟前
李丹完成签到,获得积分10
6分钟前
我爱科研完成签到,获得积分10
6分钟前
孙孙完成签到,获得积分10
6分钟前
Hello应助高兴电脑采纳,获得10
6分钟前
我爱科研发布了新的文献求助10
6分钟前
6分钟前
Hayat应助科研通管家采纳,获得10
6分钟前
荔枝发布了新的文献求助10
6分钟前
7分钟前
7分钟前
高兴电脑发布了新的文献求助10
7分钟前
小马甲应助骆十八采纳,获得10
8分钟前
8分钟前
搜集达人应助骆十八采纳,获得10
8分钟前
骆十八发布了新的文献求助10
8分钟前
8分钟前
骆十八发布了新的文献求助10
8分钟前
DrS完成签到,获得积分10
9分钟前
赘婿应助欣喜绮玉采纳,获得10
9分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4581998
求助须知:如何正确求助?哪些是违规求助? 3999863
关于积分的说明 12381883
捐赠科研通 3674701
什么是DOI,文献DOI怎么找? 2025340
邀请新用户注册赠送积分活动 1059107
科研通“疑难数据库(出版商)”最低求助积分说明 945731