Estimating 2013–2019 NO2 exposure with high spatiotemporal resolution in China using an ensemble model

环境科学 缩小尺度 空气质量指数 CMAQ 气象学 化学输运模型 大气科学 臭氧监测仪 卫星 二氧化氮 比例(比率) 气溶胶 空气污染 降水 地理 地图学 地质学 工程类 航空航天工程 有机化学 化学
作者
Conghong Huang,Kang Sun,Jianlin Hu,Tao Xue,Hao Xu,Meng Wang
出处
期刊:Environmental Pollution [Elsevier]
卷期号:292: 118285-118285 被引量:42
标识
DOI:10.1016/j.envpol.2021.118285
摘要

Air pollution has become a major issue in China, especially for traffic-related pollutants such as nitrogen dioxide (NO2). Current studies in China at the national scale were less focused on NO2 exposure and consequent health effects than fine particulate exposure, mainly due to a lack of high-quality exposure models for accurate NO2 predictions over a long period. We developed an advanced modeling framework that incorporated multisource, high-quality predictor data (e.g., satellite observations [Ozone Monitoring Instrument NO2, TROPOspheric Monitoring Instrument NO2, and Multi-Angle Implementation of Atmospheric Correction aerosol optical depth], chemical transport model simulations, high-resolution geographical variables) and three independent machine learning algorithms into an ensemble model. The model contains three stages: (1) filling missing satellite data; (2) building an ensemble model and predicting daily NO2 concentrations from 2013 to 2019 across China at 1×1 km2 resolution; (3) downscaling the predictions to finer resolution (100 m) at the urban scale. Our model achieves a high performance in terms of cross-validation to assess the agreement of the overall (R2 = 0.72) and the spatial (R2 = 0.85) variations of the NO2 predictions over the observations. The model performance remains moderately good when the predictions are extrapolated to the previous years without any monitoring data (CV R2 > 0.68) or regions far away from monitors (CV R2 > 0.63). We identified a clear decreasing trend of NO2 exposure from 2013 to 2019 across the country with the largest reduction in suburban and rural areas. Our downscaled model further improved the prediction ability by 4%-14% in some megacities and captured substantial NO2 variations within 1-km grids in the urban areas, especially near major roads. Our model provides flexibility at both temporal and spatial scales and can be applied to exposure assessment and epidemiological studies with various study domains (e.g., national or citywide) and settings (e.g., long-term and short-term).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大模型应助匹诺曹采纳,获得10
刚刚
ding应助过时的又槐采纳,获得10
1秒前
4秒前
鄙视注册完成签到,获得积分10
5秒前
5秒前
6秒前
6秒前
落寞溪灵完成签到 ,获得积分10
8秒前
玖玖柒idol完成签到,获得积分10
8秒前
曌虞完成签到,获得积分10
8秒前
9秒前
啥,这都是啥完成签到,获得积分10
9秒前
皮皮桂发布了新的文献求助10
10秒前
11秒前
大大发布了新的文献求助10
11秒前
12秒前
orixero应助wang1090采纳,获得30
14秒前
14秒前
l11x29发布了新的文献求助10
16秒前
lin完成签到,获得积分10
16秒前
大侠发布了新的文献求助10
17秒前
17秒前
是锦锦呀完成签到,获得积分10
17秒前
17秒前
李秋静发布了新的文献求助10
18秒前
zhen发布了新的文献求助50
20秒前
是锦锦呀发布了新的文献求助60
20秒前
Khr1stINK发布了新的文献求助10
22秒前
23秒前
NexusExplorer应助Dddd采纳,获得10
25秒前
25秒前
Akim应助zhaowenxian采纳,获得10
26秒前
谦让的鹏煊完成签到,获得积分10
27秒前
zccc完成签到 ,获得积分10
28秒前
29秒前
hhzz发布了新的文献求助10
30秒前
坚定的雁完成签到 ,获得积分10
31秒前
32秒前
两先生完成签到 ,获得积分10
32秒前
豆dou发布了新的文献求助10
32秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808