环境科学
缩小尺度
空气质量指数
CMAQ
气象学
化学输运模型
大气科学
臭氧监测仪
卫星
二氧化氮
比例(比率)
气溶胶
空气污染
降水
地理
地图学
地质学
工程类
航空航天工程
有机化学
化学
作者
Conghong Huang,Kang Sun,Jianlin Hu,Tao Xue,Hao Xu,Meng Wang
标识
DOI:10.1016/j.envpol.2021.118285
摘要
Air pollution has become a major issue in China, especially for traffic-related pollutants such as nitrogen dioxide (NO2). Current studies in China at the national scale were less focused on NO2 exposure and consequent health effects than fine particulate exposure, mainly due to a lack of high-quality exposure models for accurate NO2 predictions over a long period. We developed an advanced modeling framework that incorporated multisource, high-quality predictor data (e.g., satellite observations [Ozone Monitoring Instrument NO2, TROPOspheric Monitoring Instrument NO2, and Multi-Angle Implementation of Atmospheric Correction aerosol optical depth], chemical transport model simulations, high-resolution geographical variables) and three independent machine learning algorithms into an ensemble model. The model contains three stages: (1) filling missing satellite data; (2) building an ensemble model and predicting daily NO2 concentrations from 2013 to 2019 across China at 1×1 km2 resolution; (3) downscaling the predictions to finer resolution (100 m) at the urban scale. Our model achieves a high performance in terms of cross-validation to assess the agreement of the overall (R2 = 0.72) and the spatial (R2 = 0.85) variations of the NO2 predictions over the observations. The model performance remains moderately good when the predictions are extrapolated to the previous years without any monitoring data (CV R2 > 0.68) or regions far away from monitors (CV R2 > 0.63). We identified a clear decreasing trend of NO2 exposure from 2013 to 2019 across the country with the largest reduction in suburban and rural areas. Our downscaled model further improved the prediction ability by 4%-14% in some megacities and captured substantial NO2 variations within 1-km grids in the urban areas, especially near major roads. Our model provides flexibility at both temporal and spatial scales and can be applied to exposure assessment and epidemiological studies with various study domains (e.g., national or citywide) and settings (e.g., long-term and short-term).
科研通智能强力驱动
Strongly Powered by AbleSci AI