Estimating 2013–2019 NO2 exposure with high spatiotemporal resolution in China using an ensemble model

环境科学 缩小尺度 空气质量指数 CMAQ 气象学 化学输运模型 大气科学 臭氧监测仪 卫星 二氧化氮 比例(比率) 气溶胶 空气污染 降水 地理 地图学 地质学 工程类 航空航天工程 有机化学 化学
作者
Conghong Huang,Kang Sun,Jianlin Hu,Tao Xue,Hao Xu,Meng Wang
出处
期刊:Environmental Pollution [Elsevier BV]
卷期号:292: 118285-118285 被引量:42
标识
DOI:10.1016/j.envpol.2021.118285
摘要

Air pollution has become a major issue in China, especially for traffic-related pollutants such as nitrogen dioxide (NO2). Current studies in China at the national scale were less focused on NO2 exposure and consequent health effects than fine particulate exposure, mainly due to a lack of high-quality exposure models for accurate NO2 predictions over a long period. We developed an advanced modeling framework that incorporated multisource, high-quality predictor data (e.g., satellite observations [Ozone Monitoring Instrument NO2, TROPOspheric Monitoring Instrument NO2, and Multi-Angle Implementation of Atmospheric Correction aerosol optical depth], chemical transport model simulations, high-resolution geographical variables) and three independent machine learning algorithms into an ensemble model. The model contains three stages: (1) filling missing satellite data; (2) building an ensemble model and predicting daily NO2 concentrations from 2013 to 2019 across China at 1×1 km2 resolution; (3) downscaling the predictions to finer resolution (100 m) at the urban scale. Our model achieves a high performance in terms of cross-validation to assess the agreement of the overall (R2 = 0.72) and the spatial (R2 = 0.85) variations of the NO2 predictions over the observations. The model performance remains moderately good when the predictions are extrapolated to the previous years without any monitoring data (CV R2 > 0.68) or regions far away from monitors (CV R2 > 0.63). We identified a clear decreasing trend of NO2 exposure from 2013 to 2019 across the country with the largest reduction in suburban and rural areas. Our downscaled model further improved the prediction ability by 4%-14% in some megacities and captured substantial NO2 variations within 1-km grids in the urban areas, especially near major roads. Our model provides flexibility at both temporal and spatial scales and can be applied to exposure assessment and epidemiological studies with various study domains (e.g., national or citywide) and settings (e.g., long-term and short-term).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JJ发布了新的文献求助10
2秒前
limiao发布了新的文献求助10
3秒前
阿迪完成签到,获得积分10
3秒前
SYLH应助fy采纳,获得20
5秒前
6秒前
小马甲应助haku采纳,获得10
6秒前
zorro3574完成签到,获得积分10
8秒前
9秒前
苏苏应助依依采纳,获得30
9秒前
贪玩的访风完成签到 ,获得积分10
10秒前
Jasper应助ZM采纳,获得10
12秒前
dxs发布了新的文献求助10
12秒前
顾越完成签到,获得积分10
12秒前
无花果应助马鑫燚采纳,获得10
14秒前
爱吃猫的鱼完成签到,获得积分10
16秒前
18秒前
SciGPT应助ab采纳,获得10
18秒前
Orange应助jouholly采纳,获得10
18秒前
19秒前
20秒前
21秒前
22秒前
22秒前
22秒前
22秒前
25秒前
ZM发布了新的文献求助10
26秒前
宁人发布了新的文献求助30
27秒前
27秒前
念姬发布了新的文献求助10
28秒前
善学以致用应助mk91采纳,获得10
29秒前
haku发布了新的文献求助10
30秒前
AJ完成签到 ,获得积分10
30秒前
hxx发布了新的文献求助10
31秒前
yhx046完成签到,获得积分10
32秒前
33秒前
34秒前
yhx046发布了新的文献求助10
38秒前
宁人完成签到,获得积分10
38秒前
充电宝应助后知后觉采纳,获得10
38秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962917
求助须知:如何正确求助?哪些是违规求助? 3508861
关于积分的说明 11143755
捐赠科研通 3241789
什么是DOI,文献DOI怎么找? 1791689
邀请新用户注册赠送积分活动 873065
科研通“疑难数据库(出版商)”最低求助积分说明 803579