六方晶系
材料科学
图层(电子)
碳纤维
金属有机骨架
金属
化学工程
电池(电)
双金属
纳米技术
冶金
复合材料
结晶学
化学
有机化学
工程类
物理
吸附
功率(物理)
复合数
量子力学
作者
Zhan Yang,Shaohua Luo,Jian Feng,Lin Zhang,Xin Liu,Qing Wang,Yahui Zhang
标识
DOI:10.1016/j.compositesb.2021.109354
摘要
The lithium-oxygen batteries (LOBs) have gained extensive interest in the past decade, but are plagued by slow reaction kinetics and induced large-voltage hysteresis. Therefore, developing extremely capable catalysts to enhance catalytic behavior and mitigate oxidation-reduction overpotential of LOBs is of huge challenge and significance. Attributable to their economically friendly and great activity, transition metal oxides (TMO) have incurred lots of attention as alternative electrocatalysts to replace the currently used noble metal-based catalysts. In this work, we fabricate a highly efficient TMO (the MIL-88A heated at 500 °C under protective flow, M8-Fe3O4@NC-500) electrocatalyst as advanced cathodes, which attributed to its unique structure, numerous dendritic-shaped carbon layer was anchored inplane into the micrometer-long spindle-shaped prisms with evenly distribution and contains abundant Fe–N/Graphitic N active sites. Therefore, the LOBs (based on M8-Fe3O4@NC-500/AB cathode) deliver superior electrochemical performance with large specific capacities of 14866.1 mAh g−1, low overpotentials (1.31 V), and steady cycling stability (553 cycles, limited 500 mAh g−1, under 0.05 mA cm−2). Our work provides a novel vision to rationally design and synthesize a powerful TMO electrocatalyst (with the 2D carbon nanosheet coating) for the LOBs cathode.
科研通智能强力驱动
Strongly Powered by AbleSci AI