Meter-wave MIMO radar height measurement method based on adaptive beamforming

算法 计算机科学 波束赋形 雷达 多径传播 多输入多输出 干扰(通信) 频道(广播) 电信
作者
Chen Chen,Jianfeng Tao,Guimei Zheng,Yafei Song
出处
期刊:Digital Signal Processing [Elsevier]
卷期号:120: 103272-103272 被引量:7
标识
DOI:10.1016/j.dsp.2021.103272
摘要

Meter-wave MIMO radar has multipath effects in the low elevation angle area, seriously affecting the target elevation estimation performance. Therefore, the mainstream height measurement methods are generalized MUSIC and maximum likelihood estimation algorithms that do not require decoherence processing. Still, their complexity is high, and their performance is poor at low signal-to-noise ratios. Compressed sensing and time-reversal have been applied in height measurement, with good accuracy but high complexity. To quickly and accurately obtain the height parameters of the target, this paper proposes a low-elevation height measurement method for meter-wave MIMO radar based on adaptive beamforming. First, we analyze and simplify the signal model; then use the channel matching matrix to eliminate the influence of the reflected wave on the direct wave; then use the target direct wave direction and the reflected wave direction as the interference direction, and perform adaptive beamforming on it to obtain the target elevation angle value. Furthermore, the dimension reduction matrix is used to reduce the dimensionality of the received data signal. Then an algorithm suitable for undulating terrain and inclined ground is proposed and simulated. In addition, this paper gives the complexity of the proposed algorithm and the comparison algorithm. At last, in terms of the signal-to-noise ratio, the number of snapshots, the number of array elements, and the elevation angle, many simulation experiments are carried out to compare the proposed height measurement algorithm with the mainstream height measurement algorithm. The simulation results show that the accuracy and robustness of the proposed height measurement algorithm are the best under these factors.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Ava应助hehehe采纳,获得10
1秒前
Badada发布了新的文献求助10
1秒前
ice完成签到,获得积分10
1秒前
1秒前
1秒前
诸葛迎海发布了新的文献求助10
2秒前
小白发布了新的文献求助10
2秒前
orixero应助甄明硕采纳,获得10
2秒前
勤奋半邪发布了新的文献求助30
3秒前
hlll完成签到 ,获得积分10
3秒前
3秒前
4秒前
5秒前
51发布了新的文献求助30
5秒前
6秒前
6秒前
今后应助1823采纳,获得10
6秒前
sskaze完成签到 ,获得积分10
6秒前
6秒前
失眠鹤完成签到 ,获得积分10
7秒前
7秒前
积极无敌完成签到 ,获得积分10
8秒前
汉堡包应助淡淡的鸽子采纳,获得10
8秒前
9秒前
9秒前
Shubin828发布了新的文献求助10
10秒前
10秒前
10秒前
11秒前
李佳烨发布了新的文献求助10
11秒前
hehehe发布了新的文献求助10
12秒前
12秒前
陈龙完成签到,获得积分10
12秒前
王优秀发布了新的文献求助10
13秒前
13秒前
14秒前
顾宇完成签到,获得积分10
14秒前
LTJ完成签到,获得积分10
14秒前
勤奋半邪完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5649011
求助须知:如何正确求助?哪些是违规求助? 4777097
关于积分的说明 15046363
捐赠科研通 4807843
什么是DOI,文献DOI怎么找? 2571160
邀请新用户注册赠送积分活动 1527756
关于科研通互助平台的介绍 1486683