Protecting the future: balancing proteostasis for reproduction

体细胞 生物 蛋白质稳态 背景(考古学) 细胞生物学 蛋白质组 遗传学 基因 古生物学
作者
Ambre J. Sala,Richard I. Morimoto
出处
期刊:Trends in Cell Biology [Elsevier]
卷期号:32 (3): 202-215 被引量:34
标识
DOI:10.1016/j.tcb.2021.09.009
摘要

The proteostasis network (PN) regulates protein synthesis, folding, and degradation to protect the integrity of the proteome. The PN is essential during reproduction to support germ cell function and prevent the transmission of protein damage to the progeny. PN dysregulation and accumulation of proteome damage in arrested oocytes may contribute to the age-associated decline of female reproductive capacity. The reproductive system regulates proteostasis in somatic tissues via systemic signals that impact organismal health and longevity in model organisms. The proteostasis network (PN) regulates protein synthesis, folding, and degradation and is critical for the health and function of all cells. The PN has been extensively studied in the context of aging and age-related diseases, and loss of proteostasis is regarded as a major contributor to many age-associated disorders. In contrast to somatic tissues, an important feature of germ cells is their ability to maintain a healthy proteome across generations. Accumulating evidence has now revealed multiple layers of PN regulation that support germ cell function, determine reproductive capacity during aging, and prioritize reproduction at the expense of somatic health. Here, we review recent insights into these different modes of regulation and their implications for reproductive and somatic aging. The proteostasis network (PN) regulates protein synthesis, folding, and degradation and is critical for the health and function of all cells. The PN has been extensively studied in the context of aging and age-related diseases, and loss of proteostasis is regarded as a major contributor to many age-associated disorders. In contrast to somatic tissues, an important feature of germ cells is their ability to maintain a healthy proteome across generations. Accumulating evidence has now revealed multiple layers of PN regulation that support germ cell function, determine reproductive capacity during aging, and prioritize reproduction at the expense of somatic health. Here, we review recent insights into these different modes of regulation and their implications for reproductive and somatic aging.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
鸭梨发布了新的文献求助10
1秒前
小二郎应助ss采纳,获得10
1秒前
承乐发布了新的文献求助10
1秒前
开心的孤云完成签到,获得积分10
1秒前
1秒前
考拉完成签到,获得积分10
2秒前
maffei完成签到,获得积分10
2秒前
无极微光应助十米采纳,获得20
2秒前
小鹿完成签到,获得积分10
3秒前
3秒前
纳斯达克完成签到,获得积分10
4秒前
4秒前
5秒前
淡淡de橙子完成签到,获得积分10
5秒前
贝塔贝塔发布了新的文献求助10
5秒前
5秒前
科研通AI2S应助调皮的滑板采纳,获得10
6秒前
bubu发布了新的文献求助10
6秒前
xixi发布了新的文献求助10
6秒前
7秒前
7秒前
xiaofeizhu发布了新的文献求助10
7秒前
深情安青应助刘丰铭采纳,获得10
7秒前
无极微光应助雷Lei采纳,获得20
8秒前
8秒前
8秒前
Eon发布了新的文献求助10
8秒前
10秒前
十把刀刀完成签到,获得积分10
10秒前
11秒前
隐形曼青应助美好的冷亦采纳,获得10
11秒前
xiasha完成签到 ,获得积分10
11秒前
12秒前
12秒前
幽默的尔蓝完成签到,获得积分10
12秒前
科研通AI6应助f1mike110采纳,获得10
12秒前
Liao完成签到,获得积分10
13秒前
小懒猪完成签到,获得积分10
14秒前
木木木发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608292
求助须知:如何正确求助?哪些是违规求助? 4692876
关于积分的说明 14875899
捐赠科研通 4717214
什么是DOI,文献DOI怎么找? 2544162
邀请新用户注册赠送积分活动 1509147
关于科研通互助平台的介绍 1472809