体细胞
生物
蛋白质稳态
背景(考古学)
细胞生物学
蛋白质组
遗传学
基因
古生物学
作者
Ambre Sala,Richard I. Morimoto
标识
DOI:10.1016/j.tcb.2021.09.009
摘要
The proteostasis network (PN) regulates protein synthesis, folding, and degradation to protect the integrity of the proteome. The PN is essential during reproduction to support germ cell function and prevent the transmission of protein damage to the progeny. PN dysregulation and accumulation of proteome damage in arrested oocytes may contribute to the age-associated decline of female reproductive capacity. The reproductive system regulates proteostasis in somatic tissues via systemic signals that impact organismal health and longevity in model organisms. The proteostasis network (PN) regulates protein synthesis, folding, and degradation and is critical for the health and function of all cells. The PN has been extensively studied in the context of aging and age-related diseases, and loss of proteostasis is regarded as a major contributor to many age-associated disorders. In contrast to somatic tissues, an important feature of germ cells is their ability to maintain a healthy proteome across generations. Accumulating evidence has now revealed multiple layers of PN regulation that support germ cell function, determine reproductive capacity during aging, and prioritize reproduction at the expense of somatic health. Here, we review recent insights into these different modes of regulation and their implications for reproductive and somatic aging. The proteostasis network (PN) regulates protein synthesis, folding, and degradation and is critical for the health and function of all cells. The PN has been extensively studied in the context of aging and age-related diseases, and loss of proteostasis is regarded as a major contributor to many age-associated disorders. In contrast to somatic tissues, an important feature of germ cells is their ability to maintain a healthy proteome across generations. Accumulating evidence has now revealed multiple layers of PN regulation that support germ cell function, determine reproductive capacity during aging, and prioritize reproduction at the expense of somatic health. Here, we review recent insights into these different modes of regulation and their implications for reproductive and somatic aging.
科研通智能强力驱动
Strongly Powered by AbleSci AI