纳米技术
材料科学
润湿
莲花效应
表面能
复合材料
化学
有机化学
原材料
作者
Saba Goharshenas Moghadam,Hamidreza Parsimehr,Ali Ehsani
标识
DOI:10.1016/j.cis.2021.102397
摘要
Surface wetting has a significant influence on the performance and applications of the materials. The superhydrophobic surfaces have water repellency due to low surface energy chemistry and micro/nanostructure roughness. The amazing applications of superhydrophobic surfaces (SHSs) lead to increase attention to superhydrophobicity in recent decades. The SHSs have been fabricated through chemical and physical methods. The further properties of SHSs as functions such as self-healing, anti-bacterial, anti-fouling, and stimuli-responsiveness are considered as the functions of the SHSs. The Multifunctional SHSs (MSHSs) that contained superhydrophobicity and at least two other properties as the next generation of the SHSs are swiftly developed in recent years. The multiple applications of the MSHSs are originated from specific morphology and functional groups of the MSHSs. The functions (properties) of the MSHSs are categorized into three groups including self-cleaning properties, restrictive properties, and smart properties. Designing and keeping surface structure plays a significant role in fabricating durable MSHSs. However, there is a big challenge to design and also scale up mechanochemical durable MSHSs. Based on state-of-the-art investigations, establishing a self-healing function can improve the durability of SHSs. The durable self-healing MSHSs can enhance the performance of the other functions and lifespan of the surface. In this review, all surface structures and superhydrophobic agents in MSHSs are investigated. The perspective of the MSHSs determined the next generation of the MSHSs have several significant parameters including durability, stability, more functions, more responsiveness, and environmentally friendly features for fabricating the large-scale MSHSs and enhancing their applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI