Multi-scale driver behavior modeling based on deep spatial-temporal representation for intelligent vehicles

计算机科学 人工智能 高级驾驶员辅助系统 编码器 卷积神经网络 过程(计算) 循环神经网络 实现(概率) 可视化 人工神经网络 代表(政治) 深度学习 统计 法学 操作系统 政治学 政治 数学
作者
Yang Xing,Chen Lv,Dongpu Cao,Efstathios Velenis
出处
期刊:Transportation Research Part C-emerging Technologies [Elsevier]
卷期号:130: 103288-103288 被引量:27
标识
DOI:10.1016/j.trc.2021.103288
摘要

Abstract The mutual understanding between driver and vehicle is critical to the realization of intelligent vehicles and customized interaction interface. In this study, a unified driver behavior modeling system toward multi-scale behavior recognition is proposed to enhance the driver behavior reasoning ability for intelligent vehicles. Specifically, the driver behavior recognition system is designed to simultaneously recognize the driver's physical and mental states based on a deep encoder-decoder framework. The model jointly learns to recognize three driver behaviors with different time scales: mirror checking and facial expression state, and two mental behaviors, including intention and emotion. The encoder module is designed based on a deep convolutional neural network (CNN) to capture spatial information from the input video stream. Then, several decoders for different driver states estimation are proposed with fully-connected (FC) and long short-term memory (LSTM) based recurrent neural networks (RNN). Two naturalistic datasets are used in this study to investigate the model performance, which is a local highway dataset, namely, CranData, and one public dataset from Brain4Cars. Based on the spatial–temporal representation of driver physical behavior, it shows that the observed physical behaviors can be used to model the latent mental behaviors through the proposed end-to-end learning process. The testing results on these two datasets show state-of-the-art results on mirror checking behavior, intention, and emotion recognition. With the proposed system, intelligent vehicles can gain a holistic understanding of the driver's physical and phycological behaviors to better collaborate and interact with the human driver, and the driver behavior reasoning system helps to reduce the conflicts between the human and vehicle automation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
zqingxia发布了新的文献求助10
3秒前
土豆丝炒姜丝应助wzx采纳,获得10
4秒前
camelia发布了新的文献求助10
4秒前
6秒前
义气雍完成签到 ,获得积分10
6秒前
优美亦云完成签到,获得积分10
8秒前
lulu完成签到,获得积分10
10秒前
Singularity应助vv采纳,获得10
11秒前
Ava应助旭宝儿采纳,获得10
11秒前
12秒前
12秒前
12秒前
zhongbo完成签到,获得积分10
12秒前
bkagyin应助玖梦采纳,获得10
14秒前
祥瑞发布了新的文献求助10
15秒前
baby的跑男发布了新的文献求助10
19秒前
jiang发布了新的文献求助10
19秒前
曾经的臻完成签到,获得积分10
19秒前
vv发布了新的文献求助10
21秒前
baby的跑男完成签到,获得积分10
22秒前
科研通AI2S应助周浩宇采纳,获得10
23秒前
vip668完成签到,获得积分10
29秒前
无花果应助zqingxia采纳,获得10
30秒前
花痴的易真完成签到,获得积分10
32秒前
32秒前
33秒前
33秒前
weisfeat完成签到,获得积分20
34秒前
一米八发布了新的文献求助10
37秒前
从此以后发布了新的文献求助10
38秒前
weisfeat发布了新的文献求助10
38秒前
39秒前
祥瑞完成签到,获得积分10
40秒前
41秒前
彭于晏应助mm采纳,获得10
42秒前
Shan完成签到 ,获得积分10
46秒前
迷路的乐菱完成签到 ,获得积分10
47秒前
48秒前
良辰应助羊羊羊采纳,获得10
48秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3138630
求助须知:如何正确求助?哪些是违规求助? 2789658
关于积分的说明 7791830
捐赠科研通 2445993
什么是DOI,文献DOI怎么找? 1300801
科研通“疑难数据库(出版商)”最低求助积分说明 626058
版权声明 601079