Multi-scale driver behavior modeling based on deep spatial-temporal representation for intelligent vehicles

计算机科学 人工智能 高级驾驶员辅助系统 编码器 卷积神经网络 过程(计算) 循环神经网络 实现(概率) 可视化 人工神经网络 代表(政治) 深度学习 统计 法学 操作系统 政治学 政治 数学
作者
Yang Xing,Chen Lv,Dongpu Cao,Efstathios Velenis
出处
期刊:Transportation Research Part C-emerging Technologies [Elsevier]
卷期号:130: 103288-103288 被引量:27
标识
DOI:10.1016/j.trc.2021.103288
摘要

Abstract The mutual understanding between driver and vehicle is critical to the realization of intelligent vehicles and customized interaction interface. In this study, a unified driver behavior modeling system toward multi-scale behavior recognition is proposed to enhance the driver behavior reasoning ability for intelligent vehicles. Specifically, the driver behavior recognition system is designed to simultaneously recognize the driver's physical and mental states based on a deep encoder-decoder framework. The model jointly learns to recognize three driver behaviors with different time scales: mirror checking and facial expression state, and two mental behaviors, including intention and emotion. The encoder module is designed based on a deep convolutional neural network (CNN) to capture spatial information from the input video stream. Then, several decoders for different driver states estimation are proposed with fully-connected (FC) and long short-term memory (LSTM) based recurrent neural networks (RNN). Two naturalistic datasets are used in this study to investigate the model performance, which is a local highway dataset, namely, CranData, and one public dataset from Brain4Cars. Based on the spatial–temporal representation of driver physical behavior, it shows that the observed physical behaviors can be used to model the latent mental behaviors through the proposed end-to-end learning process. The testing results on these two datasets show state-of-the-art results on mirror checking behavior, intention, and emotion recognition. With the proposed system, intelligent vehicles can gain a holistic understanding of the driver's physical and phycological behaviors to better collaborate and interact with the human driver, and the driver behavior reasoning system helps to reduce the conflicts between the human and vehicle automation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CLTTT完成签到,获得积分0
1秒前
LiangRen完成签到 ,获得积分10
5秒前
JJJ完成签到,获得积分10
16秒前
哥哥完成签到,获得积分10
26秒前
dllnf发布了新的文献求助10
29秒前
啦啦啦完成签到 ,获得积分20
38秒前
娟娟完成签到 ,获得积分10
50秒前
52秒前
53秒前
hdhuang完成签到,获得积分10
54秒前
tcheng发布了新的文献求助10
58秒前
dllnf完成签到,获得积分10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
tcheng完成签到,获得积分10
1分钟前
佳言2009完成签到 ,获得积分10
1分钟前
一天完成签到 ,获得积分10
1分钟前
忧虑的静柏完成签到 ,获得积分10
1分钟前
啊哒吸哇完成签到,获得积分10
1分钟前
2分钟前
Sunny完成签到,获得积分10
2分钟前
2分钟前
EVEN完成签到 ,获得积分0
2分钟前
木头人发布了新的文献求助20
2分钟前
三杯吐然诺完成签到 ,获得积分10
2分钟前
shacodow完成签到,获得积分10
2分钟前
小学徒完成签到 ,获得积分10
2分钟前
不劳而获完成签到 ,获得积分10
2分钟前
jiunuan完成签到,获得积分10
2分钟前
WL完成签到 ,获得积分10
2分钟前
ll完成签到,获得积分10
2分钟前
瞿人雄完成签到,获得积分10
2分钟前
没心没肺完成签到,获得积分10
3分钟前
1002SHIB完成签到,获得积分10
3分钟前
nihaolaojiu完成签到,获得积分10
3分钟前
sheetung完成签到,获得积分10
3分钟前
共享精神应助科研通管家采纳,获得10
3分钟前
shhoing应助科研通管家采纳,获得10
3分钟前
麦田麦兜完成签到,获得积分10
3分钟前
3分钟前
宇文鹏煊完成签到 ,获得积分10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Rousseau, le chemin de ronde 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5539095
求助须知:如何正确求助?哪些是违规求助? 4625935
关于积分的说明 14597077
捐赠科研通 4566735
什么是DOI,文献DOI怎么找? 2503520
邀请新用户注册赠送积分活动 1481524
关于科研通互助平台的介绍 1453020