Multi-scale driver behavior modeling based on deep spatial-temporal representation for intelligent vehicles

计算机科学 人工智能 高级驾驶员辅助系统 编码器 卷积神经网络 过程(计算) 循环神经网络 实现(概率) 可视化 人工神经网络 代表(政治) 深度学习 统计 法学 操作系统 政治学 政治 数学
作者
Yang Xing,Chen Lv,Dongpu Cao,Efstathios Velenis
出处
期刊:Transportation Research Part C-emerging Technologies [Elsevier BV]
卷期号:130: 103288-103288 被引量:27
标识
DOI:10.1016/j.trc.2021.103288
摘要

Abstract The mutual understanding between driver and vehicle is critical to the realization of intelligent vehicles and customized interaction interface. In this study, a unified driver behavior modeling system toward multi-scale behavior recognition is proposed to enhance the driver behavior reasoning ability for intelligent vehicles. Specifically, the driver behavior recognition system is designed to simultaneously recognize the driver's physical and mental states based on a deep encoder-decoder framework. The model jointly learns to recognize three driver behaviors with different time scales: mirror checking and facial expression state, and two mental behaviors, including intention and emotion. The encoder module is designed based on a deep convolutional neural network (CNN) to capture spatial information from the input video stream. Then, several decoders for different driver states estimation are proposed with fully-connected (FC) and long short-term memory (LSTM) based recurrent neural networks (RNN). Two naturalistic datasets are used in this study to investigate the model performance, which is a local highway dataset, namely, CranData, and one public dataset from Brain4Cars. Based on the spatial–temporal representation of driver physical behavior, it shows that the observed physical behaviors can be used to model the latent mental behaviors through the proposed end-to-end learning process. The testing results on these two datasets show state-of-the-art results on mirror checking behavior, intention, and emotion recognition. With the proposed system, intelligent vehicles can gain a holistic understanding of the driver's physical and phycological behaviors to better collaborate and interact with the human driver, and the driver behavior reasoning system helps to reduce the conflicts between the human and vehicle automation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
PG完成签到,获得积分10
2秒前
Lucas应助温暖雨采纳,获得10
2秒前
3秒前
隐形曼青应助你的样子采纳,获得10
3秒前
sxd完成签到,获得积分10
4秒前
struggling发布了新的文献求助10
5秒前
话梅完成签到,获得积分10
5秒前
5秒前
阿洋完成签到,获得积分10
5秒前
Dicy发布了新的文献求助10
6秒前
9秒前
别来无恙发布了新的文献求助10
9秒前
10秒前
吃人陈发布了新的文献求助10
10秒前
桐桐应助Dicy采纳,获得10
11秒前
lrq完成签到,获得积分10
12秒前
华仔应助21采纳,获得10
13秒前
14秒前
GOODYUE发布了新的文献求助10
15秒前
mmiww完成签到,获得积分10
15秒前
Lore完成签到,获得积分10
17秒前
Cll完成签到 ,获得积分10
18秒前
杨玉轩完成签到,获得积分10
19秒前
20秒前
GOODYUE完成签到,获得积分10
20秒前
地表飞猪应助Emon采纳,获得10
20秒前
weiyu_u发布了新的文献求助10
20秒前
21秒前
李健应助星星采纳,获得10
24秒前
量子星尘发布了新的文献求助150
25秒前
26秒前
Dicy发布了新的文献求助10
26秒前
JamesPei应助小南采纳,获得10
26秒前
奋斗完成签到,获得积分10
28秒前
深海鱼完成签到,获得积分10
28秒前
HonamC发布了新的文献求助60
28秒前
29秒前
YY完成签到,获得积分10
29秒前
舟舟完成签到,获得积分10
29秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959564
求助须知:如何正确求助?哪些是违规求助? 3505819
关于积分的说明 11126349
捐赠科研通 3237712
什么是DOI,文献DOI怎么找? 1789318
邀请新用户注册赠送积分活动 871669
科研通“疑难数据库(出版商)”最低求助积分说明 802951