Multi-scale driver behavior modeling based on deep spatial-temporal representation for intelligent vehicles

计算机科学 人工智能 高级驾驶员辅助系统 编码器 卷积神经网络 过程(计算) 循环神经网络 实现(概率) 可视化 人工神经网络 代表(政治) 深度学习 统计 法学 操作系统 政治学 政治 数学
作者
Yang Xing,Chen Lv,Dongpu Cao,Efstathios Velenis
出处
期刊:Transportation Research Part C-emerging Technologies [Elsevier]
卷期号:130: 103288-103288 被引量:27
标识
DOI:10.1016/j.trc.2021.103288
摘要

Abstract The mutual understanding between driver and vehicle is critical to the realization of intelligent vehicles and customized interaction interface. In this study, a unified driver behavior modeling system toward multi-scale behavior recognition is proposed to enhance the driver behavior reasoning ability for intelligent vehicles. Specifically, the driver behavior recognition system is designed to simultaneously recognize the driver's physical and mental states based on a deep encoder-decoder framework. The model jointly learns to recognize three driver behaviors with different time scales: mirror checking and facial expression state, and two mental behaviors, including intention and emotion. The encoder module is designed based on a deep convolutional neural network (CNN) to capture spatial information from the input video stream. Then, several decoders for different driver states estimation are proposed with fully-connected (FC) and long short-term memory (LSTM) based recurrent neural networks (RNN). Two naturalistic datasets are used in this study to investigate the model performance, which is a local highway dataset, namely, CranData, and one public dataset from Brain4Cars. Based on the spatial–temporal representation of driver physical behavior, it shows that the observed physical behaviors can be used to model the latent mental behaviors through the proposed end-to-end learning process. The testing results on these two datasets show state-of-the-art results on mirror checking behavior, intention, and emotion recognition. With the proposed system, intelligent vehicles can gain a holistic understanding of the driver's physical and phycological behaviors to better collaborate and interact with the human driver, and the driver behavior reasoning system helps to reduce the conflicts between the human and vehicle automation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
端木笨笨完成签到 ,获得积分10
刚刚
星河完成签到,获得积分10
1秒前
CodeCraft应助超级的鞅采纳,获得10
2秒前
beichuanheqi发布了新的文献求助10
2秒前
健忘惜海完成签到,获得积分10
2秒前
2秒前
77完成签到,获得积分10
2秒前
3秒前
3秒前
李小明发布了新的文献求助10
3秒前
3秒前
Ruia发布了新的文献求助10
3秒前
星晓完成签到,获得积分10
3秒前
Bottle完成签到,获得积分10
3秒前
情怀应助聪明的宛菡采纳,获得10
3秒前
晓晓完成签到,获得积分10
4秒前
阳光桐完成签到,获得积分10
4秒前
4秒前
wik完成签到,获得积分10
4秒前
Lucas应助帅帅厅采纳,获得200
5秒前
5秒前
壹壹完成签到 ,获得积分10
5秒前
5秒前
88发布了新的文献求助10
5秒前
wdb发布了新的文献求助10
6秒前
超级的鞅完成签到,获得积分10
6秒前
马理想发布了新的文献求助10
6秒前
南兮完成签到,获得积分10
7秒前
李书荣完成签到 ,获得积分10
8秒前
1234发布了新的文献求助10
8秒前
开朗的驳完成签到,获得积分10
9秒前
阿卡林完成签到,获得积分10
9秒前
Jasper应助李健采纳,获得10
9秒前
littlechy完成签到,获得积分10
9秒前
9秒前
Zx_1993应助tcx采纳,获得10
11秒前
11秒前
Ava应助tcx采纳,获得10
11秒前
Ava应助qiqi1111采纳,获得10
11秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5348949
求助须知:如何正确求助?哪些是违规求助? 4482966
关于积分的说明 13953201
捐赠科研通 4381788
什么是DOI,文献DOI怎么找? 2407580
邀请新用户注册赠送积分活动 1400237
关于科研通互助平台的介绍 1373411