Multi-scale driver behavior modeling based on deep spatial-temporal representation for intelligent vehicles

计算机科学 人工智能 高级驾驶员辅助系统 编码器 卷积神经网络 过程(计算) 循环神经网络 实现(概率) 可视化 人工神经网络 代表(政治) 深度学习 统计 法学 操作系统 政治学 政治 数学
作者
Yang Xing,Chen Lv,Dongpu Cao,Efstathios Velenis
出处
期刊:Transportation Research Part C-emerging Technologies [Elsevier]
卷期号:130: 103288-103288 被引量:27
标识
DOI:10.1016/j.trc.2021.103288
摘要

Abstract The mutual understanding between driver and vehicle is critical to the realization of intelligent vehicles and customized interaction interface. In this study, a unified driver behavior modeling system toward multi-scale behavior recognition is proposed to enhance the driver behavior reasoning ability for intelligent vehicles. Specifically, the driver behavior recognition system is designed to simultaneously recognize the driver's physical and mental states based on a deep encoder-decoder framework. The model jointly learns to recognize three driver behaviors with different time scales: mirror checking and facial expression state, and two mental behaviors, including intention and emotion. The encoder module is designed based on a deep convolutional neural network (CNN) to capture spatial information from the input video stream. Then, several decoders for different driver states estimation are proposed with fully-connected (FC) and long short-term memory (LSTM) based recurrent neural networks (RNN). Two naturalistic datasets are used in this study to investigate the model performance, which is a local highway dataset, namely, CranData, and one public dataset from Brain4Cars. Based on the spatial–temporal representation of driver physical behavior, it shows that the observed physical behaviors can be used to model the latent mental behaviors through the proposed end-to-end learning process. The testing results on these two datasets show state-of-the-art results on mirror checking behavior, intention, and emotion recognition. With the proposed system, intelligent vehicles can gain a holistic understanding of the driver's physical and phycological behaviors to better collaborate and interact with the human driver, and the driver behavior reasoning system helps to reduce the conflicts between the human and vehicle automation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
简简完成签到,获得积分10
1秒前
1秒前
希望天下0贩的0应助sanyue采纳,获得10
1秒前
酸酸完成签到,获得积分10
2秒前
2秒前
2秒前
进击的PhD应助紧张的惜梦采纳,获得50
2秒前
qaz发布了新的文献求助10
2秒前
2秒前
yangyajie发布了新的文献求助10
3秒前
鱿鱼完成签到,获得积分10
3秒前
852应助TANG采纳,获得10
3秒前
4秒前
4秒前
打工人发布了新的文献求助10
5秒前
6秒前
orixero应助HAHA采纳,获得10
7秒前
科研通AI6应助HAHA采纳,获得10
7秒前
科研通AI6应助HAHA采纳,获得10
7秒前
传奇3应助陈灵敏采纳,获得10
7秒前
7秒前
鱿鱼发布了新的文献求助10
7秒前
想人陪的忆彤完成签到 ,获得积分10
8秒前
8秒前
9秒前
zyy发布了新的文献求助10
9秒前
9秒前
可爱的函函应助zwl采纳,获得10
10秒前
Damon完成签到 ,获得积分10
11秒前
11秒前
hubery发布了新的文献求助10
11秒前
11秒前
leihaha发布了新的文献求助30
13秒前
FashionBoy应助义气的采文采纳,获得10
13秒前
852应助义气的采文采纳,获得10
13秒前
13秒前
无花果应助义气的采文采纳,获得10
13秒前
14秒前
科研通AI6应助义气的采文采纳,获得10
14秒前
量子星尘发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642103
求助须知:如何正确求助?哪些是违规求助? 4758150
关于积分的说明 15016411
捐赠科研通 4800600
什么是DOI,文献DOI怎么找? 2566140
邀请新用户注册赠送积分活动 1524244
关于科研通互助平台的介绍 1483901