中尺度气象学
材料科学
高碳
复合材料
冶金
地质学
气候学
铁氧体(磁铁)
作者
Shiori Gondo,Rena Tanemura,Ryuki Mitsui,Satoshi Kajino,Mitsuhiko Asakawa,Kosuke Takemoto,Kenichi Tashima,Shinsuke Suzuki
出处
期刊:The minerals, metals & materials series
日期:2021-01-01
卷期号:: 1767-1774
被引量:1
标识
DOI:10.1007/978-3-030-75381-8_148
摘要
This study aims to clarify the transition of mesoscale structure of a drawn wire versus drawing strain. High-carbon steel wiresHigh carbon steel wire 0.276, 0.444, and 0.936 mm in diameter were drawn until wires could be drawn without rupture. Two results were obtained from a crystal orientationCrystal orientation analysis of the electron backscatter diffraction pattern. First, the mesoscale structure in the wire consisted only of a subprimary fiber textureFiber texture {100}<110>-{111}<110> at the drawing limit, that is the largest drawing strain when the wire could be drawn without rupture. Second, it is predicted that the transition of the mesoscale structure versus the drawing strain will occur as follows regardless of the initial wire diameter: In the beginning of wire drawingWire drawing, the wire will have only a primary fiber textureFiber texture {100}<110>-{111}<110>. After a slight increase in the drawing strain, the wire will have the primary fiber textureFiber texture at its outer side and a secondary fiber textureFiber texture {111}<110>-{110}<110> at the inner side. After a further increase in the drawing strain, the wire will have a subprimary fiber textureFiber texture at the outer side and a secondary fiber texture at the inner side. Moreover, increase in the drawing strain, the wire will have only a subprimary fiber texture.
科研通智能强力驱动
Strongly Powered by AbleSci AI