自编码
全息术
计算机科学
人工智能
人工神经网络
斑点图案
解码方法
深度学习
计算全息
全息显示器
编码(内存)
光学
迭代重建
计算机视觉
概化理论
模式识别(心理学)
算法
物理
数学
统计
作者
Jiachen Wu,Ke‐Xuan Liu,Xiaomeng Sui,Liangcai Cao
出处
期刊:Optics Letters
[The Optical Society]
日期:2021-05-18
卷期号:46 (12): 2908-2908
被引量:136
摘要
Learning-based computer-generated holography (CGH) provides a rapid hologram generation approach for holographic displays. Supervised training requires a large-scale dataset with target images and corresponding holograms. We propose an autoencoder-based neural network (holoencoder) for phase-only hologram generation. Physical diffraction propagation was incorporated into the autoencoder’s decoding part. The holoencoder can automatically learn the latent encodings of phase-only holograms in an unsupervised manner. The proposed holoencoder was able to generate high-fidelity 4K resolution holograms in 0.15 s. The reconstruction results validate the good generalizability of the holoencoder, and the experiments show fewer speckles in the reconstructed image compared with the existing CGH algorithms.
科研通智能强力驱动
Strongly Powered by AbleSci AI