已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Breast ultrasound image segmentation: A coarse‐to‐fine fusion convolutional neural network

计算机科学 人工智能 分割 卷积神经网络 编码器 背景(考古学) 模式识别(心理学) 图像分割 乳腺摄影术 计算机视觉 特征(语言学) 乳腺超声检查 乳腺癌 操作系统 癌症 内科学 哲学 古生物学 生物 医学 语言学
作者
Ke Wang,Shujun Liang,Shengzhou Zhong,Qianjin Feng,Zhenyuan Ning,Yu Zhang
出处
期刊:Medical Physics [Wiley]
卷期号:48 (8): 4262-4278 被引量:34
标识
DOI:10.1002/mp.15006
摘要

Purpose Breast ultrasound (BUS) image segmentation plays a crucial role in computer‐aided diagnosis systems for BUS examination, which are useful for improved accuracy of breast cancer diagnosis. However, such performance remains a challenging task owing to the poor image quality and large variations in the sizes, shapes, and locations of breast lesions. In this paper, we propose a new convolutional neural network with coarse‐to‐fine feature fusion to address the aforementioned challenges. Methods The proposed fusion network consists of an encoder path, a decoder path, and a core fusion stream path (FSP). The encoder path is used to capture the context information, and the decoder path is used for localization prediction. The FSP is designed to generate beneficial aggregate feature representations (i.e., various‐sized lesion features, aggregated coarse‐to‐fine information, and high‐resolution edge characteristics) from the encoder and decoder paths, which are eventually used for accurate breast lesion segmentation. To better retain the boundary information and alleviate the effect of image noise, we input the superpixel image along with the original image to the fusion network. Furthermore, a weighted‐balanced loss function was designed to address the problem of lesion regions having different sizes. We then conducted exhaustive experiments on three public BUS datasets to evaluate the proposed network. Results The proposed method outperformed state‐of‐the‐art (SOTA) segmentation methods on the three public BUS datasets, with average dice similarity coefficients of 84.71(±1.07), 83.76(±0.83), and 86.52(±1.52), average intersection‐over‐union values of 76.34(±1.50), 75.70(±0.98), and 77.86(±2.07), average sensitivities of 86.66(±1.82), 85.21(±1.98), and 87.21(±2.51), average specificities of 97.92(±0.46), 98.57(±0.19), and 99.42(±0.21), and average accuracies of 95.89(±0.57), 97.17(±0.3), and 98.51(±0.3). Conclusions The proposed fusion network could effectively segment lesions from BUS images, thereby presenting a new feature fusion strategy to handle challenging task of segmentation, while outperforming the SOTA segmentation methods. The code is publicly available at https://github.com/mniwk/CF2‐NET .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
凶狠的寄风完成签到 ,获得积分10
刚刚
1秒前
www完成签到,获得积分10
2秒前
依依发布了新的文献求助10
3秒前
洪星完成签到,获得积分10
5秒前
www发布了新的文献求助10
5秒前
共享精神应助zouxuan采纳,获得10
7秒前
舒心谷雪完成签到 ,获得积分10
7秒前
Rn完成签到 ,获得积分10
8秒前
luo完成签到 ,获得积分10
11秒前
东风发布了新的文献求助10
11秒前
hihihi完成签到,获得积分10
11秒前
13秒前
蓝枫完成签到,获得积分20
14秒前
青山完成签到 ,获得积分10
16秒前
李健的小迷弟应助独木舟采纳,获得10
18秒前
量子星尘发布了新的文献求助10
18秒前
19秒前
天天天晴完成签到,获得积分10
20秒前
21秒前
ding应助sinsinsin采纳,获得10
22秒前
wyz完成签到 ,获得积分10
22秒前
zouxuan完成签到,获得积分10
23秒前
JianmaoChen发布了新的文献求助10
24秒前
26秒前
26秒前
欣一完成签到,获得积分10
27秒前
赘婿应助懒得取名字采纳,获得10
29秒前
sinsinsin发布了新的文献求助10
30秒前
乃惜完成签到,获得积分10
31秒前
风清扬应助alexa采纳,获得10
31秒前
东风完成签到,获得积分10
34秒前
JamesPei应助现代哑铃采纳,获得100
38秒前
科研通AI2S应助KDS采纳,获得10
39秒前
41秒前
ice完成签到,获得积分10
42秒前
养一只鱼完成签到 ,获得积分10
42秒前
43秒前
田様应助鸭子兔采纳,获得10
44秒前
Fury发布了新的文献求助10
45秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956943
求助须知:如何正确求助?哪些是违规求助? 3503011
关于积分的说明 11110935
捐赠科研通 3234007
什么是DOI,文献DOI怎么找? 1787694
邀请新用户注册赠送积分活动 870713
科研通“疑难数据库(出版商)”最低求助积分说明 802234