已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Breast ultrasound image segmentation: A coarse‐to‐fine fusion convolutional neural network

计算机科学 人工智能 分割 卷积神经网络 编码器 背景(考古学) 模式识别(心理学) 图像分割 乳腺摄影术 计算机视觉 特征(语言学) 乳腺超声检查 乳腺癌 操作系统 癌症 内科学 哲学 古生物学 生物 医学 语言学
作者
Ke Wang,Shujun Liang,Shengzhou Zhong,Qianjin Feng,Zhenyuan Ning,Yu Zhang
出处
期刊:Medical Physics [Wiley]
卷期号:48 (8): 4262-4278 被引量:34
标识
DOI:10.1002/mp.15006
摘要

Purpose Breast ultrasound (BUS) image segmentation plays a crucial role in computer‐aided diagnosis systems for BUS examination, which are useful for improved accuracy of breast cancer diagnosis. However, such performance remains a challenging task owing to the poor image quality and large variations in the sizes, shapes, and locations of breast lesions. In this paper, we propose a new convolutional neural network with coarse‐to‐fine feature fusion to address the aforementioned challenges. Methods The proposed fusion network consists of an encoder path, a decoder path, and a core fusion stream path (FSP). The encoder path is used to capture the context information, and the decoder path is used for localization prediction. The FSP is designed to generate beneficial aggregate feature representations (i.e., various‐sized lesion features, aggregated coarse‐to‐fine information, and high‐resolution edge characteristics) from the encoder and decoder paths, which are eventually used for accurate breast lesion segmentation. To better retain the boundary information and alleviate the effect of image noise, we input the superpixel image along with the original image to the fusion network. Furthermore, a weighted‐balanced loss function was designed to address the problem of lesion regions having different sizes. We then conducted exhaustive experiments on three public BUS datasets to evaluate the proposed network. Results The proposed method outperformed state‐of‐the‐art (SOTA) segmentation methods on the three public BUS datasets, with average dice similarity coefficients of 84.71(±1.07), 83.76(±0.83), and 86.52(±1.52), average intersection‐over‐union values of 76.34(±1.50), 75.70(±0.98), and 77.86(±2.07), average sensitivities of 86.66(±1.82), 85.21(±1.98), and 87.21(±2.51), average specificities of 97.92(±0.46), 98.57(±0.19), and 99.42(±0.21), and average accuracies of 95.89(±0.57), 97.17(±0.3), and 98.51(±0.3). Conclusions The proposed fusion network could effectively segment lesions from BUS images, thereby presenting a new feature fusion strategy to handle challenging task of segmentation, while outperforming the SOTA segmentation methods. The code is publicly available at https://github.com/mniwk/CF2‐NET .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
卓越完成签到,获得积分10
4秒前
成成发布了新的文献求助10
5秒前
6秒前
6秒前
李斌发布了新的文献求助10
6秒前
丘比特应助Huang采纳,获得10
7秒前
蓝胖子发布了新的文献求助10
7秒前
领导范儿应助自信的坤采纳,获得10
8秒前
9秒前
nenoaowu发布了新的文献求助10
10秒前
科研通AI2S应助Lcrainy采纳,获得10
13秒前
16秒前
19秒前
21秒前
炙心发布了新的文献求助10
21秒前
999完成签到,获得积分10
22秒前
星辰大海应助852采纳,获得20
22秒前
大个应助罗浩禹采纳,获得10
23秒前
zoey完成签到 ,获得积分10
24秒前
anan发布了新的文献求助10
24秒前
xip发布了新的文献求助10
28秒前
上官若男应助羡雨0413采纳,获得10
28秒前
含蓄妖丽完成签到 ,获得积分10
29秒前
32秒前
852发布了新的文献求助20
33秒前
xaoi完成签到 ,获得积分10
34秒前
卓越发布了新的文献求助10
34秒前
36秒前
39秒前
学术智子发布了新的文献求助10
42秒前
CodeCraft应助枫威采纳,获得10
45秒前
racill发布了新的文献求助10
45秒前
48秒前
50秒前
Lucas应助1234567xjy采纳,获得10
52秒前
星辰大海应助俭朴千万采纳,获得10
52秒前
53秒前
汉堡包应助口外彭于晏采纳,获得10
53秒前
脑洞疼应助一手灵魂采纳,获得10
58秒前
香山叶正红完成签到 ,获得积分10
1分钟前
高分求助中
歯科矯正学 第7版(或第5版) 1004
The diagnosis of sex before birth using cells from the amniotic fluid (a preliminary report) 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3229401
求助须知:如何正确求助?哪些是违规求助? 2877137
关于积分的说明 8197812
捐赠科研通 2544458
什么是DOI,文献DOI怎么找? 1374396
科研通“疑难数据库(出版商)”最低求助积分说明 646956
邀请新用户注册赠送积分活动 621749