High‐Efficiency Anion‐Exchange Membrane Water Electrolyzer Enabled by Ternary Layered Double Hydroxide Anode

过电位 析氧 氢氧化物 电解 材料科学 膜电极组件 纳米片 化学工程 阳极 碱性水电解 电解水 交换电流密度 电极 电化学 离子交换 催化作用 阴极 无机化学 可逆氢电极 分解水 电解质 三元运算 化学 参比电极 纳米技术 塔菲尔方程 离子 物理化学 工程类 光催化 有机化学 生物化学 计算机科学 程序设计语言
作者
Jooyoung Lee,Hyeonjung Jung,Yoo Sei Park,Seongwon Woo,Juchan Yang,Myeong Je Jang,Jaehoon Jeong,Nayoung Kwon,Byungkwon Lim,Jeong Woo Han,Sung Mook Choi
出处
期刊:Small [Wiley]
卷期号:17 (28) 被引量:66
标识
DOI:10.1002/smll.202100639
摘要

Abstract Developing high‐efficiency and low‐cost oxygen‐evolving electrodes in anion exchange membrane (AEM) water electrolysis technology is one of the major challenges. Herein, it is demonstrated that the surface corrosion of a conventional Ni foam electrode in the presence of Fe 3+ and V 3+ cations can transform it into an electrode with a high catalytic performance for oxygen evolution reaction (OER). The corroded electrode consists of a ternary NiFeV layered double hydroxide (LDH) nanosheet array supported on the Ni foam surface. This NiFeV LDH electrode achieves an OER current density of 100 mA cm −2 at an overpotential of 272 mV in 1 m KOH, outperforming the IrO 2 catalyst by 180 mV. Density functional theory calculations reveal that the unique structure and the presence of vanadium in NiFeV LDH play a key role in achieving improved OER activity. When coupled with a commercial Pt/C cathode catalyst, the resulting AEM water electrolyzer achieves a cell current density as high as 2.1 A cm −2 at a voltage of only 1.8 V cell in 1 m KOH, which is similar to the performance of the proton exchange membrane water electrolyzer obtained from the IrO 2 and Pt/C catalysts pair.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Riki完成签到,获得积分10
1秒前
虚幻白玉发布了新的文献求助10
1秒前
德行天下完成签到,获得积分10
1秒前
Jenny应助lan采纳,获得10
2秒前
fztnh完成签到,获得积分10
2秒前
上官若男应助lyz666采纳,获得10
2秒前
顾念完成签到 ,获得积分10
2秒前
277发布了新的文献求助10
3秒前
小二郎应助GCD采纳,获得10
4秒前
hhhhhh完成签到 ,获得积分10
4秒前
甜味拾荒者完成签到,获得积分10
6秒前
小二郎应助BONBON采纳,获得10
6秒前
7秒前
charllie完成签到 ,获得积分10
7秒前
空禅yew完成签到,获得积分10
8秒前
坚强亦丝应助跳跃采纳,获得10
10秒前
英俊的铭应助cc采纳,获得10
10秒前
huangsan完成签到,获得积分10
10秒前
匹诺曹完成签到,获得积分10
10秒前
11秒前
华仔应助进取拼搏采纳,获得10
11秒前
12秒前
dingdong发布了新的文献求助10
12秒前
you完成签到 ,获得积分10
13秒前
qwf完成签到 ,获得积分10
13秒前
14秒前
万能图书馆应助一一采纳,获得10
14秒前
执着跳跳糖完成签到 ,获得积分10
15秒前
阳yang完成签到,获得积分10
15秒前
牛头人完成签到,获得积分10
15秒前
16秒前
Rrr发布了新的文献求助10
16秒前
17秒前
17秒前
serenity完成签到 ,获得积分10
17秒前
Benliu完成签到,获得积分10
17秒前
csq发布了新的文献求助10
18秒前
19秒前
Hello应助外向的醉易采纳,获得10
19秒前
DWWWDAADAD完成签到,获得积分10
22秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808