Notions of explainability and evaluation approaches for explainable artificial intelligence

可解释性 计算机科学 等级制度 人工智能 聚类分析 组分(热力学) 数据科学 订单(交换) 可靠性(半导体) 管理科学 机器学习 功率(物理) 物理 财务 量子力学 经济 市场经济 热力学
作者
Giulia Vilone,Luca Longo
出处
期刊:Information Fusion [Elsevier]
卷期号:76: 89-106 被引量:368
标识
DOI:10.1016/j.inffus.2021.05.009
摘要

Explainable Artificial Intelligence (XAI) has experienced a significant growth over the last few years. This is due to the widespread application of machine learning, particularly deep learning, that has led to the development of highly accurate models that lack explainability and interpretability. A plethora of methods to tackle this problem have been proposed, developed and tested, coupled with several studies attempting to define the concept of explainability and its evaluation. This systematic review contributes to the body of knowledge by clustering all the scientific studies via a hierarchical system that classifies theories and notions related to the concept of explainability and the evaluation approaches for XAI methods. The structure of this hierarchy builds on top of an exhaustive analysis of existing taxonomies and peer-reviewed scientific material. Findings suggest that scholars have identified numerous notions and requirements that an explanation should meet in order to be easily understandable by end-users and to provide actionable information that can inform decision making. They have also suggested various approaches to assess to what degree machine-generated explanations meet these demands. Overall, these approaches can be clustered into human-centred evaluations and evaluations with more objective metrics. However, despite the vast body of knowledge developed around the concept of explainability, there is not a general consensus among scholars on how an explanation should be defined, and how its validity and reliability assessed. Eventually, this review concludes by critically discussing these gaps and limitations, and it defines future research directions with explainability as the starting component of any artificial intelligent system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
谢谢不会谢完成签到 ,获得积分10
3秒前
1111发布了新的文献求助10
3秒前
5秒前
5秒前
夕寸完成签到,获得积分10
5秒前
Shinkai39完成签到,获得积分10
5秒前
7秒前
xiaohongmao发布了新的文献求助10
8秒前
科研通AI5应助虚幻的不评采纳,获得10
8秒前
8秒前
xiaoxiaoqiu发布了新的文献求助10
9秒前
9秒前
10秒前
10秒前
10秒前
11秒前
11秒前
1111完成签到,获得积分10
11秒前
Ch_7发布了新的文献求助10
11秒前
11秒前
l蓝石发布了新的文献求助10
11秒前
jinhuanghuiyu发布了新的文献求助10
12秒前
上官若男应助远方采纳,获得10
12秒前
古果发布了新的文献求助10
13秒前
13秒前
ziyuwang发布了新的文献求助10
13秒前
13秒前
迅速若魔发布了新的文献求助10
14秒前
xiaoxia发布了新的文献求助10
14秒前
cherry bomb完成签到,获得积分10
15秒前
ding发布了新的文献求助30
15秒前
asapshaozhu发布了新的文献求助10
15秒前
15秒前
独特的绯发布了新的文献求助10
17秒前
魈玖发布了新的文献求助10
17秒前
18秒前
wyt发布了新的文献求助10
18秒前
迷人若冰完成签到,获得积分20
19秒前
共享精神应助仁爱的荷花采纳,获得10
19秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 820
England and the Discovery of America, 1481-1620 600
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3574241
求助须知:如何正确求助?哪些是违规求助? 3143968
关于积分的说明 9454615
捐赠科研通 2845545
什么是DOI,文献DOI怎么找? 1564367
邀请新用户注册赠送积分活动 732224
科研通“疑难数据库(出版商)”最低求助积分说明 718968