清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

DeepDigest: Prediction of Protein Proteolytic Digestion with Deep Learning

蛋白酵素 化学 蛋白质组学 胰蛋白酶 糜蛋白酶 蛋白水解酶 计算生物学 鸟枪蛋白质组学 劈理(地质) 生物化学 人工智能 机器学习 计算机科学 生物 古生物学 基因 断裂(地质)
作者
Jinghan Yang,Zhiqiang Gao,Xiuhan Ren,Jie Sheng,Ping Xu,Cheng Chang,Yan Fu
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:93 (15): 6094-6103 被引量:29
标识
DOI:10.1021/acs.analchem.0c04704
摘要

Proteolytic digestion of proteins by one or more proteases is a key step in shotgun proteomics, in which the proteolytic products, i.e., peptides, are taken as the surrogates of their parent proteins for further qualitative or quantitative analysis. The proteases generally cleave proteins at specific amino acid residue sites, but digestion is hardly complete (wide existence of missed cleavage sites). Therefore, it would be of great help to improve the prior experimental design and the posterior data analysis if the digestion behaviors of proteases can be accurately modeled and predicted. At present, systematic studies about the commonly used proteases in proteomics are insufficient, and there is a lack of easy-to-use tools to predict the cleavage sites of different proteases. Here, we propose a novel sequence-based deep learning algorithm—DeepDigest, which integrates convolutional neural networks and long short-term memory networks for protein digestion prediction. DeepDigest can predict the cleavage probability of each potential cleavage site on the protein sequences for eight popular proteases including trypsin, ArgC, chymotrypsin, GluC, LysC, AspN, LysN, and LysargiNase. We compared DeepDigest with three traditional machine learning algorithms, i.e., logistic regression, random forest, and support vector machine. On the eight training data sets, the 10-fold cross-validation accuracies (AUCs) of DeepDigest were 0.956–0.982, significantly higher than those of the three traditional algorithms. On the 11 independent test data sets, DeepDigest achieved AUCs between 0.849 and 0.978, outperforming the other traditional algorithms in most cases. Transfer learning then further improved the prediction accuracy. Besides, some interesting characteristics of different proteases were revealed and discussed. Ultimately, as an application, we used DeepDigest to predict the digestibilities of peptides and demonstrated that peptide digestibility is an informative new feature to discriminate between correct and incorrect peptide identifications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
vbnn完成签到 ,获得积分10
3秒前
33333发布了新的文献求助10
6秒前
醉生梦死完成签到 ,获得积分10
6秒前
本本完成签到 ,获得积分10
11秒前
33333完成签到,获得积分10
17秒前
量子星尘发布了新的文献求助10
1分钟前
muriel完成签到,获得积分10
1分钟前
Liufgui应助科研通管家采纳,获得10
1分钟前
量子星尘发布了新的文献求助10
2分钟前
laber完成签到,获得积分0
2分钟前
naczx完成签到,获得积分0
2分钟前
2分钟前
2分钟前
温暖笑容发布了新的文献求助10
2分钟前
CodeCraft应助温暖笑容采纳,获得10
2分钟前
量子星尘发布了新的文献求助10
3分钟前
4分钟前
温暖笑容发布了新的文献求助10
4分钟前
apt完成签到 ,获得积分10
4分钟前
4分钟前
tt完成签到 ,获得积分10
4分钟前
jyy发布了新的文献求助200
5分钟前
量子星尘发布了新的文献求助10
5分钟前
来日方长应助温暖笑容采纳,获得10
5分钟前
5分钟前
猪猪完成签到 ,获得积分10
5分钟前
温暖笑容完成签到,获得积分20
5分钟前
三个气的大门完成签到 ,获得积分10
6分钟前
稻子完成签到 ,获得积分10
6分钟前
孙老师完成签到 ,获得积分10
6分钟前
雪山飞龙发布了新的文献求助10
6分钟前
7分钟前
王杨发布了新的文献求助10
7分钟前
量子星尘发布了新的文献求助10
7分钟前
完美世界应助科研通管家采纳,获得10
7分钟前
pK完成签到 ,获得积分10
8分钟前
9分钟前
Raul完成签到 ,获得积分10
9分钟前
量子星尘发布了新的文献求助10
9分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4008429
求助须知:如何正确求助?哪些是违规求助? 3548151
关于积分的说明 11298711
捐赠科研通 3282900
什么是DOI,文献DOI怎么找? 1810274
邀请新用户注册赠送积分活动 885976
科研通“疑难数据库(出版商)”最低求助积分说明 811209