DeepDigest: Prediction of Protein Proteolytic Digestion with Deep Learning

蛋白酵素 化学 蛋白质组学 胰蛋白酶 糜蛋白酶 蛋白水解酶 计算生物学 鸟枪蛋白质组学 劈理(地质) 生物化学 人工智能 机器学习 计算机科学 生物 古生物学 基因 断裂(地质)
作者
Jinghan Yang,Zhiqiang Gao,Xiuhan Ren,Jie Sheng,Ping Xu,Cheng Chang,Yan Fu
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:93 (15): 6094-6103 被引量:39
标识
DOI:10.1021/acs.analchem.0c04704
摘要

Proteolytic digestion of proteins by one or more proteases is a key step in shotgun proteomics, in which the proteolytic products, i.e., peptides, are taken as the surrogates of their parent proteins for further qualitative or quantitative analysis. The proteases generally cleave proteins at specific amino acid residue sites, but digestion is hardly complete (wide existence of missed cleavage sites). Therefore, it would be of great help to improve the prior experimental design and the posterior data analysis if the digestion behaviors of proteases can be accurately modeled and predicted. At present, systematic studies about the commonly used proteases in proteomics are insufficient, and there is a lack of easy-to-use tools to predict the cleavage sites of different proteases. Here, we propose a novel sequence-based deep learning algorithm-DeepDigest, which integrates convolutional neural networks and long short-term memory networks for protein digestion prediction. DeepDigest can predict the cleavage probability of each potential cleavage site on the protein sequences for eight popular proteases including trypsin, ArgC, chymotrypsin, GluC, LysC, AspN, LysN, and LysargiNase. We compared DeepDigest with three traditional machine learning algorithms, i.e., logistic regression, random forest, and support vector machine. On the eight training data sets, the 10-fold cross-validation accuracies (AUCs) of DeepDigest were 0.956-0.982, significantly higher than those of the three traditional algorithms. On the 11 independent test data sets, DeepDigest achieved AUCs between 0.849 and 0.978, outperforming the other traditional algorithms in most cases. Transfer learning then further improved the prediction accuracy. Besides, some interesting characteristics of different proteases were revealed and discussed. Ultimately, as an application, we used DeepDigest to predict the digestibilities of peptides and demonstrated that peptide digestibility is an informative new feature to discriminate between correct and incorrect peptide identifications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
于淼完成签到,获得积分10
刚刚
刚刚
W29完成签到,获得积分0
刚刚
zsq完成签到,获得积分10
1秒前
Lucas应助wh采纳,获得10
1秒前
万能图书馆应助认真的艳采纳,获得10
1秒前
wenwenya完成签到 ,获得积分20
1秒前
万能图书馆应助帆船采纳,获得10
2秒前
3秒前
yu完成签到 ,获得积分10
3秒前
山月完成签到 ,获得积分10
4秒前
任性静蕾发布了新的文献求助10
4秒前
5秒前
CodeCraft应助sky采纳,获得10
5秒前
5秒前
bkagyin应助suwan采纳,获得10
5秒前
沉静立辉完成签到,获得积分10
5秒前
任性笑容发布了新的文献求助10
5秒前
aa发布了新的文献求助10
6秒前
gkw发布了新的文献求助10
7秒前
8秒前
海鸥别叫了完成签到 ,获得积分10
8秒前
yzy完成签到,获得积分10
9秒前
复杂易形发布了新的文献求助10
10秒前
11秒前
11秒前
共享精神应助clio采纳,获得10
11秒前
李爱国应助aa采纳,获得30
11秒前
打打应助多情飞松采纳,获得10
12秒前
12秒前
wh发布了新的文献求助10
13秒前
shaohua2011完成签到,获得积分10
13秒前
lizzzzzz发布了新的文献求助30
14秒前
14秒前
i说晚安发布了新的文献求助10
16秒前
gfy发布了新的文献求助10
16秒前
隐形曼青应助suwan采纳,获得10
16秒前
柏淏发布了新的文献求助30
18秒前
18秒前
吹梦西洲完成签到,获得积分10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5258516
求助须知:如何正确求助?哪些是违规求助? 4420433
关于积分的说明 13760385
捐赠科研通 4294122
什么是DOI,文献DOI怎么找? 2356262
邀请新用户注册赠送积分活动 1352585
关于科研通互助平台的介绍 1313403