Three-dimensional–printed marker–based augmented reality neuronavigation: a new neuronavigation technique

神经导航 增强现实 医学 影像引导手术 3d打印 计算机视觉 分割 人工智能 计算机科学 放射科 核医学 生物医学工程 磁共振成像
作者
Gorkem Yavas,Kadri Emre Calıskan,Mehmet Sedat Cağlı
出处
期刊:Neurosurgical Focus [American Association of Neurological Surgeons]
卷期号:51 (2): E20-E20 被引量:18
标识
DOI:10.3171/2021.5.focus21206
摘要

OBJECTIVE The aim of this study was to assess the precision and feasibility of 3D-printed marker–based augmented reality (AR) neurosurgical navigation and its use intraoperatively compared with optical tracking neuronavigation systems (OTNSs). METHODS Three-dimensional–printed markers for CT and MRI and intraoperative use were applied with mobile devices using an AR light detection and ranging (LIDAR) camera. The 3D segmentations of intracranial tumors were created with CT and MR images, and preoperative registration of the marker and pathology was performed. A patient-specific, surgeon-facilitated mobile application was developed, and a mobile device camera was used for neuronavigation with high accuracy, ease, and cost-effectiveness. After accuracy values were preliminarily assessed, this technique was used intraoperatively in 8 patients. RESULTS The mobile device LIDAR camera was found to successfully overlay images of virtual tumor segmentations according to the position of a 3D-printed marker. The targeting error that was measured ranged from 0.5 to 3.5 mm (mean 1.70 ± 1.02 mm, median 1.58 mm). The mean preoperative preparation time was 35.7 ± 5.56 minutes, which is longer than that for routine OTNSs, but the amount of time required for preoperative registration and the placement of the intraoperative marker was very brief compared with other neurosurgical navigation systems (mean 1.02 ± 0.3 minutes). CONCLUSIONS The 3D-printed marker–based AR neuronavigation system was a clinically feasible, highly precise, low-cost, and easy-to-use navigation technique. Three-dimensional segmentation of intracranial tumors was targeted on the brain and was clearly visualized from the skin incision to the end of surgery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
笨笨完成签到,获得积分10
刚刚
tpl发布了新的文献求助10
1秒前
2秒前
3秒前
汉堡包应助K先生采纳,获得10
6秒前
6秒前
浮游应助你好采纳,获得10
6秒前
欢喜的之瑶完成签到,获得积分10
7秒前
张会发布了新的文献求助10
8秒前
所所应助传统的乐安采纳,获得10
8秒前
科研通AI2S应助tpl采纳,获得10
8秒前
8秒前
shangbowen发布了新的文献求助10
9秒前
毛万良完成签到,获得积分10
10秒前
NiL发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助100
10秒前
10秒前
daytoy完成签到,获得积分10
11秒前
11秒前
胡瓜拌凉皮完成签到,获得积分10
12秒前
李想完成签到,获得积分10
13秒前
14秒前
1111发布了新的文献求助30
14秒前
缥缈冷亦发布了新的文献求助100
14秒前
14秒前
你好发布了新的文献求助10
15秒前
领导范儿应助Cole采纳,获得10
15秒前
周老八发布了新的文献求助10
15秒前
勤劳山柏完成签到,获得积分20
16秒前
17秒前
Lucas应助daytoy采纳,获得10
17秒前
17秒前
17秒前
17秒前
沐言完成签到,获得积分10
18秒前
18秒前
Qing完成签到,获得积分10
19秒前
勤劳山柏发布了新的文献求助10
20秒前
灵寒完成签到 ,获得积分10
20秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4920907
求助须知:如何正确求助?哪些是违规求助? 4192271
关于积分的说明 13021164
捐赠科研通 3963456
什么是DOI,文献DOI怎么找? 2172475
邀请新用户注册赠送积分活动 1190294
关于科研通互助平台的介绍 1099310