材料科学
金属间化合物
合金
微观结构
极限抗拉强度
纳米棒
高熵合金
退火(玻璃)
降水
等温过程
延展性(地球科学)
复合材料
冶金
热力学
蠕动
纳米技术
气象学
物理
作者
Bharat Gwalani,Sriswaroop Dasari,Abhishek Sharma,Vishal Soni,Shivakant Shukla,Abhinav Jagetia,Priyanshi Agrawal,Rajiv S. Mishra,Rajarshi Banerjee
出处
期刊:Acta Materialia
[Elsevier]
日期:2021-10-01
卷期号:219: 117234-117234
被引量:74
标识
DOI:10.1016/j.actamat.2021.117234
摘要
This paper introduces a new microstructural template for high entropy alloys (HEAs), where the face centered cubic (FCC) complex concentrated solid solution is reinforced with a high density of strong, yet deformable, nanorods of an ordered multi-component intermetallic L12 compound. Thermodynamic modeling has been employed to design this HEA with a large L12 volume fraction. Thermo-mechanical processing by isothermal annealing of the conventionally processed bulk cold-rolled alloy directly at precipitation temperatures, has been applied to produce a high density of uniformly distributed L12 nanorods within refined FCC grains, resulting from concomitant recrystallization and discontinuous precipitation processes. The nanorod morphology of the discontinuous L12 product has been established from three-dimensional atom probe tomography. The refined grains result in a complete coverage of the microstructure with discontinuously precipitated intermetallic nanorods. This nanorod strengthened HEA exhibits an exceptionally high room temperature yield strength of ∼1630 MPa, good tensile ductility of ∼15%, and an ultimate tensile strength of ∼1720 MPa. Furthermore, a single L12 phase alloy, melted based on the precipitate composition in the two-phase FCC + L12 HEA, exhibits very high compressive deformability and strain hardenability, unusual for ordered intermetallic compounds. These results open a new strategy for design of fine-grained microstructures strengthened via ordered intermetallic phases, exploiting the beneficial effects of discontinuous precipitation, for achieving very high room temperature tensile strengths while maintaining good ductility.
科研通智能强力驱动
Strongly Powered by AbleSci AI