亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

P–117 Bioinformatic analysis of NRF2 in the study of association of NRF2 variant and male infertility related to smoking status

生物 男性不育 不育 男科 精子 DNA损伤 小RNA 基因 单核苷酸多态性 遗传学 氧化应激 基因型 DNA 内分泌学 医学 怀孕
作者
Dunya Aydos,Sena Aydos,Yunus Yükselten,Asuman Sunguroğlu,Kaan Aydos
出处
期刊:Human Reproduction [Oxford University Press]
卷期号:36 (Supplement_1)
标识
DOI:10.1093/humrep/deab130.116
摘要

Abstract Study question Could Nrf2 polymorphism (–617C>A; rs6721961) and oxidative stress (OS)-induced changes of signature seminal plasma (SP) miRNAs related to Nrf2 provide possible biomarkers of male infertility? Summary answer –617C>A SNP is associated with infertility through sperm OS DNA damage and miR–582–5p and miR–20a–5p, differentially represented between spermatozoa of smokers-non-smokers, might regulate Nrf2/ARE axis. What is known already As an extrinsic factor causing OS, smoking decreases male infertility by causing sperm membrane damage and DNA fragmentation. Expression of proteins related to the antioxidant defense system and phase 2 detoxifying enzymes controlled mainly by Nrf2/ARE pathway components is vital in managing OS-induced DNA damage. miRNAs, which multiple of are produced abundantly in male germ cells throughout spermatogenesis, have been detected in SP and contribute to multiple biological processes related to male reproductive events. miRNA-expression alterations may be induced in response to OS and without involving DNA sequence changes, miRNAs can provide additional mechanism of regulating the Nrf2 gene expression. Study design, size, duration Wild-type (WT) and SNP (–617) alleles in the Nrf2 gene were studied in 100 infertile cases and 100 controls and their associations with seminal parameters in relation to smoking status were assessed. In infertile cases, sperm DNA damage level was determined and compared among Nrf2 genotypes. Interactions between differentially expressed miRNAs (DEMIs) in response to smoking and Nrf2/ARE pathway components were visualized on a miRNA-mRNA regulatory network using CluePedia (v1.5.7) plugin of Cytoscape software (v3.8.2). Participants/materials, setting, methods Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) was utilized to genotype the Nrf2 SNP (–617). DNA damages were analyzed by Comet assay. DEMIs were identified by a comprehensive bioinformatics analysis using the miRNA expression dataset GSE44134 downloaded from the GEO database. Predicted targets of DEMIs in smokers were identified by mirDIP portal. Known interactions between Nrf2 and its first neighbors were visualized after selecting STRING-actions, miRTarBase and miRecords validated miRNA source files from CluePedia panel. Main results and the role of chance There was significant difference for Nrf2 polymorphism between fertile and infertile males. The A allele was detected more frequently in the patient group; (P = 0.001). The frequencies of the C and A alleles of the Nrf2 were 62% and 38% in patients, and 78% and 44% in control group. The AA genotype was higher in the infertiles; 14% vs. 3% (P = 0.001). In smokers, sperm quality decreased significantly in AA genotype. The risk of DNA damage was highest with 224.58 AU in the AA genotype group, whereas it is the lowest with 164.56 AU in those carrying the CC genotype (P < 0.005). 21 differentially expressed miRNAs (including 7 downregulated and 14 upregulated in smokers) were identified. Among the upregulated DEMIs, miR–582–5p, miR–20a–5p, miR–573, miR–186–5p, miR–499a–5p were found to target the Nrf2 mRNA, suggesting their usage as biomarkers capable of indicating the antioxidant ability of the male reproductive system. The interrelations between Nrf2/Nrf2 direct interactors and DEMIs revealed the regulatory role of hsa-miR–20a–5p in SQSTM1/p62-Keap1-Nrf2 axis linked to selective autophagy. hsa-miR–582–5p was found to regulate the JNK/Jun/caspase–3 pathway, previously shown to be activated in response to OS, in which JUN can activate or suppress the Nrf2 expression. Limitations, reasons for caution Small number of cases while evaluating the effect of smoking weakens our ability to generalize the results. Including other coexisting factors and larger patient groups carrying other functional variants of Nrf2 as well as confirming the results at the protein level would further strengthen the results of the study. Wider implications of the findings: This study is the first to report –617C>A polymorphism in the Nrf2 gene in the Turkish population and such a SNP may cause impaired fertility in men, especially in smokers, through oxidative metabolism. Considering these data may be valuable in determining risk groups. Trial registration number N/A
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
StayGolDay完成签到,获得积分10
10秒前
wanci应助科研通管家采纳,获得10
31秒前
李健应助科研通管家采纳,获得30
31秒前
31秒前
maodeshu应助clement采纳,获得20
1分钟前
纯洁完成签到,获得积分10
1分钟前
1分钟前
草木完成签到,获得积分10
1分钟前
1分钟前
wEric发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
红细胞发布了新的文献求助10
2分钟前
2分钟前
柯语雪完成签到 ,获得积分10
3分钟前
所所应助yaoyao采纳,获得10
3分钟前
3分钟前
领导范儿应助追求者采纳,获得10
4分钟前
xiw完成签到,获得积分10
4分钟前
5分钟前
5分钟前
wEric发布了新的文献求助10
6分钟前
wEric完成签到,获得积分20
6分钟前
6分钟前
lanxinge完成签到 ,获得积分10
6分钟前
6分钟前
7分钟前
Yau完成签到,获得积分10
7分钟前
Lucas应助涛ya采纳,获得10
8分钟前
8分钟前
涛ya发布了新的文献求助10
8分钟前
8分钟前
8分钟前
贾斯汀铁柱完成签到,获得积分10
9分钟前
9分钟前
廖芳芳发布了新的文献求助30
9分钟前
9分钟前
10分钟前
镜子发布了新的文献求助10
10分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
MATLAB在传热学例题中的应用 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3303289
求助须知:如何正确求助?哪些是违规求助? 2937578
关于积分的说明 8482528
捐赠科研通 2611482
什么是DOI,文献DOI怎么找? 1425942
科研通“疑难数据库(出版商)”最低求助积分说明 662457
邀请新用户注册赠送积分活动 647005