Deep learning-based algorithm for assessment of knee osteoarthritis severity in radiographs matches performance of radiologists

骨关节炎 卡帕 分级(工程) 试验装置 算法 射线照相术 医学 人工智能 科恩卡帕 计算机科学 深度学习 机器学习 放射科 数学 病理 替代医学 土木工程 几何学 工程类
作者
Albert Swiecicki,Nianyi Li,J. M. O’Donnell,Nicholas Said,Jichen Yang,Richard C. Mather,William A. Jiranek,Maciej A. Mazurowski
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:133: 104334-104334 被引量:65
标识
DOI:10.1016/j.compbiomed.2021.104334
摘要

A fully-automated deep learning algorithm matched performance of radiologists in assessment of knee osteoarthritis severity in radiographs using the Kellgren-Lawrence grading system. To develop an automated deep learning-based algorithm that jointly uses Posterior-Anterior (PA) and Lateral (LAT) views of knee radiographs to assess knee osteoarthritis severity according to the Kellgren-Lawrence grading system. We used a dataset of 9739 exams from 2802 patients from Multicenter Osteoarthritis Study (MOST). The dataset was divided into a training set of 2040 patients, a validation set of 259 patients and a test set of 503 patients. A novel deep learning-based method was utilized for assessment of knee OA in two steps: (1) localization of knee joints in the images, (2) classification according to the KL grading system. Our method used both PA and LAT views as the input to the model. The scores generated by the algorithm were compared to the grades provided in the MOST dataset for the entire test set as well as grades provided by 5 radiologists at our institution for a subset of the test set. The model obtained a multi-class accuracy of 71.90% on the entire test set when compared to the ratings provided in the MOST dataset. The quadratic weighted Kappa coefficient for this set was 0.9066. The average quadratic weighted Kappa between all pairs of radiologists from our institution who took part in the study was 0.748. The average quadratic-weighted Kappa between the algorithm and the radiologists at our institution was 0.769. The proposed model performed demonstrated equivalency of KL classification to MSK radiologists, but clearly superior reproducibility. Our model also agreed with radiologists at our institution to the same extent as the radiologists with each other. The algorithm could be used to provide reproducible assessment of knee osteoarthritis severity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lowe完成签到,获得积分10
1秒前
2秒前
超自然关注了科研通微信公众号
4秒前
4秒前
123完成签到,获得积分10
5秒前
fighting完成签到 ,获得积分10
5秒前
6秒前
H-kevin.完成签到,获得积分10
7秒前
9秒前
10秒前
量子星尘发布了新的文献求助10
10秒前
12秒前
15秒前
叶子完成签到,获得积分10
16秒前
17秒前
鱼蛋丸子完成签到,获得积分10
19秒前
浮云发布了新的文献求助10
20秒前
21秒前
圆锥香蕉发布了新的文献求助50
22秒前
26秒前
佳佳应助闲听松风眠采纳,获得10
27秒前
超自然发布了新的文献求助10
27秒前
ding应助玖Nine采纳,获得10
28秒前
隐形曼青应助玖Nine采纳,获得10
28秒前
荡秋千的猴子完成签到,获得积分10
29秒前
叶子发布了新的文献求助10
31秒前
CodeCraft应助忧郁丹彤采纳,获得10
32秒前
35秒前
滴滴答答完成签到 ,获得积分10
35秒前
哦噢藕完成签到,获得积分10
35秒前
田様应助科研通管家采纳,获得10
35秒前
35秒前
Orange应助科研通管家采纳,获得10
35秒前
Rondab应助科研通管家采纳,获得10
36秒前
Rondab应助科研通管家采纳,获得10
36秒前
领导范儿应助科研通管家采纳,获得10
36秒前
充电宝应助科研通管家采纳,获得10
36秒前
36秒前
思源应助科研通管家采纳,获得10
36秒前
36秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979662
求助须知:如何正确求助?哪些是违规求助? 3523636
关于积分的说明 11218202
捐赠科研通 3261164
什么是DOI,文献DOI怎么找? 1800473
邀请新用户注册赠送积分活动 879103
科研通“疑难数据库(出版商)”最低求助积分说明 807167