亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep learning-based algorithm for assessment of knee osteoarthritis severity in radiographs matches performance of radiologists

骨关节炎 卡帕 分级(工程) 试验装置 算法 射线照相术 医学 人工智能 科恩卡帕 计算机科学 深度学习 机器学习 放射科 数学 病理 替代医学 土木工程 几何学 工程类
作者
Albert Swiecicki,Nianyi Li,J. M. O’Donnell,Nicholas Said,Jichen Yang,Richard C. Mather,William A. Jiranek,Maciej A. Mazurowski
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:133: 104334-104334 被引量:65
标识
DOI:10.1016/j.compbiomed.2021.104334
摘要

A fully-automated deep learning algorithm matched performance of radiologists in assessment of knee osteoarthritis severity in radiographs using the Kellgren-Lawrence grading system. To develop an automated deep learning-based algorithm that jointly uses Posterior-Anterior (PA) and Lateral (LAT) views of knee radiographs to assess knee osteoarthritis severity according to the Kellgren-Lawrence grading system. We used a dataset of 9739 exams from 2802 patients from Multicenter Osteoarthritis Study (MOST). The dataset was divided into a training set of 2040 patients, a validation set of 259 patients and a test set of 503 patients. A novel deep learning-based method was utilized for assessment of knee OA in two steps: (1) localization of knee joints in the images, (2) classification according to the KL grading system. Our method used both PA and LAT views as the input to the model. The scores generated by the algorithm were compared to the grades provided in the MOST dataset for the entire test set as well as grades provided by 5 radiologists at our institution for a subset of the test set. The model obtained a multi-class accuracy of 71.90% on the entire test set when compared to the ratings provided in the MOST dataset. The quadratic weighted Kappa coefficient for this set was 0.9066. The average quadratic weighted Kappa between all pairs of radiologists from our institution who took part in the study was 0.748. The average quadratic-weighted Kappa between the algorithm and the radiologists at our institution was 0.769. The proposed model performed demonstrated equivalency of KL classification to MSK radiologists, but clearly superior reproducibility. Our model also agreed with radiologists at our institution to the same extent as the radiologists with each other. The algorithm could be used to provide reproducible assessment of knee osteoarthritis severity.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
14秒前
嘟嘟嘟嘟发布了新的文献求助10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
shhoing应助科研通管家采纳,获得10
1分钟前
天真台灯完成签到 ,获得积分10
1分钟前
shhoing应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
gexzygg应助科研通管家采纳,获得10
3分钟前
风趣小小完成签到,获得积分10
3分钟前
完美世界应助cenghao采纳,获得10
4分钟前
易水完成签到 ,获得积分10
4分钟前
4分钟前
爆米花应助科研通管家采纳,获得10
5分钟前
shhoing应助科研通管家采纳,获得10
5分钟前
gexzygg应助科研通管家采纳,获得10
5分钟前
cenghao发布了新的文献求助10
5分钟前
湘崽丫完成签到 ,获得积分10
5分钟前
5分钟前
Yxxx完成签到 ,获得积分10
6分钟前
科研通AI2S应助科研通管家采纳,获得10
7分钟前
丘比特应助丽海张采纳,获得10
8分钟前
风轻云淡发布了新的文献求助20
8分钟前
8分钟前
丽海张发布了新的文献求助10
8分钟前
丽海张完成签到,获得积分10
8分钟前
Sevense_完成签到,获得积分10
8分钟前
8分钟前
bubulin完成签到,获得积分10
9分钟前
shhoing应助科研通管家采纳,获得10
9分钟前
shhoing应助科研通管家采纳,获得10
9分钟前
科研通AI2S应助科研通管家采纳,获得10
9分钟前
sisyphe发布了新的文献求助10
9分钟前
ikouyo完成签到 ,获得积分10
10分钟前
科研通AI6应助hourt2395采纳,获得10
10分钟前
11分钟前
科研通AI2S应助科研通管家采纳,获得10
11分钟前
有机盐应助科研通管家采纳,获得10
11分钟前
hourt2395发布了新的文献求助10
11分钟前
11分钟前
hourt2395完成签到,获得积分20
11分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5561520
求助须知:如何正确求助?哪些是违规求助? 4646630
关于积分的说明 14678717
捐赠科研通 4587950
什么是DOI,文献DOI怎么找? 2517258
邀请新用户注册赠送积分活动 1490540
关于科研通互助平台的介绍 1461538