Deep learning-based algorithm for assessment of knee osteoarthritis severity in radiographs matches performance of radiologists

骨关节炎 卡帕 分级(工程) 试验装置 算法 射线照相术 医学 人工智能 科恩卡帕 计算机科学 深度学习 机器学习 放射科 数学 病理 工程类 土木工程 替代医学 几何学
作者
Albert Swiecicki,Nianyi Li,J. M. O’Donnell,Nicholas Said,Jichen Yang,Richard C. Mather,William A. Jiranek,Maciej A. Mazurowski
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:133: 104334-104334 被引量:65
标识
DOI:10.1016/j.compbiomed.2021.104334
摘要

A fully-automated deep learning algorithm matched performance of radiologists in assessment of knee osteoarthritis severity in radiographs using the Kellgren-Lawrence grading system. To develop an automated deep learning-based algorithm that jointly uses Posterior-Anterior (PA) and Lateral (LAT) views of knee radiographs to assess knee osteoarthritis severity according to the Kellgren-Lawrence grading system. We used a dataset of 9739 exams from 2802 patients from Multicenter Osteoarthritis Study (MOST). The dataset was divided into a training set of 2040 patients, a validation set of 259 patients and a test set of 503 patients. A novel deep learning-based method was utilized for assessment of knee OA in two steps: (1) localization of knee joints in the images, (2) classification according to the KL grading system. Our method used both PA and LAT views as the input to the model. The scores generated by the algorithm were compared to the grades provided in the MOST dataset for the entire test set as well as grades provided by 5 radiologists at our institution for a subset of the test set. The model obtained a multi-class accuracy of 71.90% on the entire test set when compared to the ratings provided in the MOST dataset. The quadratic weighted Kappa coefficient for this set was 0.9066. The average quadratic weighted Kappa between all pairs of radiologists from our institution who took part in the study was 0.748. The average quadratic-weighted Kappa between the algorithm and the radiologists at our institution was 0.769. The proposed model performed demonstrated equivalency of KL classification to MSK radiologists, but clearly superior reproducibility. Our model also agreed with radiologists at our institution to the same extent as the radiologists with each other. The algorithm could be used to provide reproducible assessment of knee osteoarthritis severity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天天快乐应助机灵的衬衫采纳,获得20
刚刚
morning发布了新的文献求助10
1秒前
meizu发布了新的文献求助10
1秒前
濮阳冰海完成签到 ,获得积分10
1秒前
1秒前
我不吃番茄完成签到,获得积分10
2秒前
2秒前
zho发布了新的文献求助10
2秒前
2秒前
2秒前
3秒前
3秒前
科研通AI5应助奋斗听筠采纳,获得10
3秒前
3秒前
清爽难敌发布了新的文献求助10
4秒前
沉心静气搞学习完成签到,获得积分10
4秒前
4秒前
aizhujun完成签到,获得积分10
5秒前
6秒前
6秒前
6秒前
七妈完成签到,获得积分10
6秒前
7秒前
汉堡包应助22222采纳,获得10
7秒前
沸羊羊发布了新的文献求助10
7秒前
涛哥完成签到,获得积分10
7秒前
风登楼发布了新的文献求助10
9秒前
9秒前
9秒前
coco发布了新的文献求助10
10秒前
Phoebe0730发布了新的文献求助30
10秒前
10秒前
852应助xiaoming采纳,获得10
10秒前
wang发布了新的文献求助10
11秒前
Orange应助Ying采纳,获得10
11秒前
闪闪寄风完成签到,获得积分10
12秒前
12秒前
12秒前
实打实完成签到,获得积分10
12秒前
石烟祝完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
A Treatise on the Mathematical Theory of Elasticity 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5252162
求助须知:如何正确求助?哪些是违规求助? 4415980
关于积分的说明 13748195
捐赠科研通 4287828
什么是DOI,文献DOI怎么找? 2352660
邀请新用户注册赠送积分活动 1349440
关于科研通互助平台的介绍 1308945