Development of long-term cardiovascular disease risk prediction model for hemodialysis patients with end-stage renal disease based on nomogram

医学 列线图 终末期肾病 血液透析 疾病 重症监护医学 内科学 阶段(地层学) 心脏病学 期限(时间) 肾脏疾病 量子力学 生物 物理 古生物学
作者
Xu You,Baohuan Gu,Tianlu Chen,Xiangyong Li,Guoxiang Xie,Chao Sang,Hequn Zou
出处
期刊:Annals of palliative medicine [AME Publishing Company]
卷期号:10 (3): 3142-3153 被引量:7
标识
DOI:10.21037/apm-21-286
摘要

Background: Chronic kidney disease (CKD) is a leading public health problem worldwide. Cardiovascular diseases are the primary cause of death in hemodialysis patients with CKD. Therefore, it is necessary to develop a simple risk assessment tool for cardiovascular events in hemodialysis patients with CKD.Methods: A cohort of 370 hemodialysis patients, who were recruited between January 2015 to September 2019 in south China, were involved in the present study. On the basis of routine blood test indicators and ultrasonic cardiogram parameters, the optimal parameter set was determined and a Cox proportional hazards model coupled with a nomogram was used to predict cardiovascular risk over 3, 5, and 10 years. Predictive performance was evaluated using Harrell's concordance index (C-index) and the area under the receiver-operating characteristic curve (AUROC). The results were validated using both 10-fold cross-validation and hold-out validation (70% training and 30% validation, repeated 100 times).Results: The optimal parameter set consisted of hypertension, diabetes mellitus, age, phosphate, triglyceride, C-reactive protein, white blood cells, and interventricular septum thickness. The time-dependent AUROCs for predicting 3-, 5-, and 10-year cardiovascular event occurrence risk were 0.836, 0.845, and 0.869, respectively. The nomogram showed satisfactory prediction performance (C-index: 0.808, 95% confidence interval: 0.773–0.844) and was well-calibrated. The results were further confirmed by 10-fold cross-validation and hold-out validation (C-index: 0.794 and 0.798, respectively).Conclusions: On the basis of several easy-to-detect clinical parameters, we developed a simple and useful nomogram for predicting cardiovascular risk in long-term hemodialysis patients that is of potential value for clinical application.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
卡他发布了新的文献求助10
1秒前
雨乐发布了新的文献求助10
3秒前
suntee发布了新的文献求助10
3秒前
5秒前
33333完成签到 ,获得积分10
5秒前
量子星尘发布了新的文献求助10
5秒前
KKKK发布了新的文献求助10
6秒前
7秒前
木易木土完成签到,获得积分10
8秒前
8秒前
天天快乐应助Fan采纳,获得10
8秒前
yu关闭了yu文献求助
9秒前
Jasper应助ychen采纳,获得10
10秒前
CipherSage应助科研通管家采纳,获得10
12秒前
慕青应助科研通管家采纳,获得10
12秒前
量子星尘发布了新的文献求助10
12秒前
酷波er应助科研通管家采纳,获得10
12秒前
浮游应助科研通管家采纳,获得10
12秒前
科研通AI6应助科研通管家采纳,获得10
12秒前
浮游应助科研通管家采纳,获得10
13秒前
13秒前
浮游应助科研通管家采纳,获得10
13秒前
十月完成签到,获得积分10
13秒前
能干巨人应助科研通管家采纳,获得10
13秒前
aaa完成签到,获得积分10
13秒前
李健应助科研通管家采纳,获得10
13秒前
13秒前
pluto应助科研通管家采纳,获得10
14秒前
传奇3应助科研通管家采纳,获得10
14秒前
Orange应助科研通管家采纳,获得10
14秒前
14秒前
浮游应助科研通管家采纳,获得10
14秒前
14秒前
14秒前
一剑温柔发布了新的文献求助10
15秒前
16秒前
大模型应助li17195采纳,获得10
16秒前
17秒前
17秒前
orixero应助标致的甜瓜采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5711738
求助须知:如何正确求助?哪些是违规求助? 5205626
关于积分的说明 15265191
捐赠科研通 4863974
什么是DOI,文献DOI怎么找? 2611057
邀请新用户注册赠送积分活动 1561379
关于科研通互助平台的介绍 1518704