Development of long-term cardiovascular disease risk prediction model for hemodialysis patients with end-stage renal disease based on nomogram

医学 列线图 终末期肾病 血液透析 疾病 重症监护医学 内科学 阶段(地层学) 心脏病学 期限(时间) 肾脏疾病 量子力学 生物 物理 古生物学
作者
Xu You,Baohuan Gu,Tianlu Chen,Xiangyong Li,Guoxiang Xie,Chao Sang,Hequn Zou
出处
期刊:Annals of palliative medicine [AME Publishing Company]
卷期号:10 (3): 3142-3153 被引量:7
标识
DOI:10.21037/apm-21-286
摘要

Background: Chronic kidney disease (CKD) is a leading public health problem worldwide. Cardiovascular diseases are the primary cause of death in hemodialysis patients with CKD. Therefore, it is necessary to develop a simple risk assessment tool for cardiovascular events in hemodialysis patients with CKD.Methods: A cohort of 370 hemodialysis patients, who were recruited between January 2015 to September 2019 in south China, were involved in the present study. On the basis of routine blood test indicators and ultrasonic cardiogram parameters, the optimal parameter set was determined and a Cox proportional hazards model coupled with a nomogram was used to predict cardiovascular risk over 3, 5, and 10 years. Predictive performance was evaluated using Harrell's concordance index (C-index) and the area under the receiver-operating characteristic curve (AUROC). The results were validated using both 10-fold cross-validation and hold-out validation (70% training and 30% validation, repeated 100 times).Results: The optimal parameter set consisted of hypertension, diabetes mellitus, age, phosphate, triglyceride, C-reactive protein, white blood cells, and interventricular septum thickness. The time-dependent AUROCs for predicting 3-, 5-, and 10-year cardiovascular event occurrence risk were 0.836, 0.845, and 0.869, respectively. The nomogram showed satisfactory prediction performance (C-index: 0.808, 95% confidence interval: 0.773–0.844) and was well-calibrated. The results were further confirmed by 10-fold cross-validation and hold-out validation (C-index: 0.794 and 0.798, respectively).Conclusions: On the basis of several easy-to-detect clinical parameters, we developed a simple and useful nomogram for predicting cardiovascular risk in long-term hemodialysis patients that is of potential value for clinical application.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
1秒前
2秒前
3秒前
3秒前
专注的问寒应助Ikkyu采纳,获得50
4秒前
所见即是我完成签到,获得积分10
4秒前
典雅的丹寒完成签到,获得积分10
4秒前
4秒前
浪子应助缓慢咖啡采纳,获得10
5秒前
6秒前
小福fufu发布了新的文献求助10
6秒前
李鸣笛发布了新的文献求助30
7秒前
7秒前
7秒前
8秒前
旅行者完成签到,获得积分10
8秒前
8秒前
zhiyuanli发布了新的文献求助10
9秒前
Ode发布了新的文献求助10
9秒前
9秒前
10秒前
陈小军发布了新的文献求助10
11秒前
11秒前
11秒前
11秒前
11秒前
欢欢完成签到,获得积分20
13秒前
zlx完成签到 ,获得积分10
13秒前
man发布了新的文献求助10
13秒前
小二郎应助我爱科研采纳,获得30
14秒前
14秒前
111发布了新的文献求助10
14秒前
怡然访云完成签到,获得积分10
15秒前
15秒前
16秒前
16秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5737037
求助须知:如何正确求助?哪些是违规求助? 5370241
关于积分的说明 15334617
捐赠科研通 4880797
什么是DOI,文献DOI怎么找? 2622998
邀请新用户注册赠送积分活动 1571878
关于科研通互助平台的介绍 1528721