Development of long-term cardiovascular disease risk prediction model for hemodialysis patients with end-stage renal disease based on nomogram

医学 列线图 终末期肾病 血液透析 疾病 重症监护医学 内科学 阶段(地层学) 心脏病学 期限(时间) 肾脏疾病 量子力学 生物 物理 古生物学
作者
Xu You,Baohuan Gu,Tianlu Chen,Xiangyong Li,Guoxiang Xie,Chao Sang,Hequn Zou
出处
期刊:Annals of palliative medicine [AME Publishing Company]
卷期号:10 (3): 3142-3153 被引量:7
标识
DOI:10.21037/apm-21-286
摘要

Background: Chronic kidney disease (CKD) is a leading public health problem worldwide. Cardiovascular diseases are the primary cause of death in hemodialysis patients with CKD. Therefore, it is necessary to develop a simple risk assessment tool for cardiovascular events in hemodialysis patients with CKD.Methods: A cohort of 370 hemodialysis patients, who were recruited between January 2015 to September 2019 in south China, were involved in the present study. On the basis of routine blood test indicators and ultrasonic cardiogram parameters, the optimal parameter set was determined and a Cox proportional hazards model coupled with a nomogram was used to predict cardiovascular risk over 3, 5, and 10 years. Predictive performance was evaluated using Harrell's concordance index (C-index) and the area under the receiver-operating characteristic curve (AUROC). The results were validated using both 10-fold cross-validation and hold-out validation (70% training and 30% validation, repeated 100 times).Results: The optimal parameter set consisted of hypertension, diabetes mellitus, age, phosphate, triglyceride, C-reactive protein, white blood cells, and interventricular septum thickness. The time-dependent AUROCs for predicting 3-, 5-, and 10-year cardiovascular event occurrence risk were 0.836, 0.845, and 0.869, respectively. The nomogram showed satisfactory prediction performance (C-index: 0.808, 95% confidence interval: 0.773–0.844) and was well-calibrated. The results were further confirmed by 10-fold cross-validation and hold-out validation (C-index: 0.794 and 0.798, respectively).Conclusions: On the basis of several easy-to-detect clinical parameters, we developed a simple and useful nomogram for predicting cardiovascular risk in long-term hemodialysis patients that is of potential value for clinical application.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Lewis完成签到,获得积分10
2秒前
orixero应助TranYan采纳,获得10
2秒前
猪猪hero发布了新的文献求助10
4秒前
5秒前
今后应助333采纳,获得10
6秒前
pu发布了新的文献求助10
7秒前
Akim应助梓榆采纳,获得10
8秒前
劼大大完成签到,获得积分10
8秒前
最优解完成签到 ,获得积分20
9秒前
9秒前
通~发布了新的文献求助10
9秒前
一段乐多完成签到,获得积分10
10秒前
10秒前
10秒前
给我找完成签到,获得积分10
11秒前
桐桐应助Yuki0616采纳,获得10
11秒前
小马甲应助鸣隐采纳,获得10
11秒前
ycd完成签到,获得积分10
12秒前
ark861023完成签到,获得积分10
12秒前
淡定问芙完成签到,获得积分10
12秒前
斯文败类应助惠惠采纳,获得10
13秒前
13秒前
Meowly完成签到,获得积分10
13秒前
14秒前
14秒前
陶醉觅夏发布了新的文献求助10
14秒前
pu完成签到,获得积分10
14秒前
小灵通完成签到,获得积分10
14秒前
给我找发布了新的文献求助10
14秒前
科研通AI2S应助LIn采纳,获得10
15秒前
gaga完成签到,获得积分10
15秒前
_Charmo完成签到,获得积分10
15秒前
Slemon完成签到,获得积分10
15秒前
谦谦姜完成签到,获得积分10
17秒前
18秒前
JINGZHANG发布了新的文献求助10
18秒前
18秒前
归海天与应助糊弄学专家采纳,获得10
18秒前
风中的青完成签到,获得积分10
19秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794