Development of long-term cardiovascular disease risk prediction model for hemodialysis patients with end-stage renal disease based on nomogram

医学 列线图 终末期肾病 血液透析 疾病 重症监护医学 内科学 阶段(地层学) 心脏病学 期限(时间) 肾脏疾病 量子力学 生物 物理 古生物学
作者
Xu You,Baohuan Gu,Tianlu Chen,Xiangyong Li,Guoxiang Xie,Chao Sang,Hequn Zou
出处
期刊:Annals of palliative medicine [AME Publishing Company]
卷期号:10 (3): 3142-3153 被引量:7
标识
DOI:10.21037/apm-21-286
摘要

Background: Chronic kidney disease (CKD) is a leading public health problem worldwide. Cardiovascular diseases are the primary cause of death in hemodialysis patients with CKD. Therefore, it is necessary to develop a simple risk assessment tool for cardiovascular events in hemodialysis patients with CKD.Methods: A cohort of 370 hemodialysis patients, who were recruited between January 2015 to September 2019 in south China, were involved in the present study. On the basis of routine blood test indicators and ultrasonic cardiogram parameters, the optimal parameter set was determined and a Cox proportional hazards model coupled with a nomogram was used to predict cardiovascular risk over 3, 5, and 10 years. Predictive performance was evaluated using Harrell's concordance index (C-index) and the area under the receiver-operating characteristic curve (AUROC). The results were validated using both 10-fold cross-validation and hold-out validation (70% training and 30% validation, repeated 100 times).Results: The optimal parameter set consisted of hypertension, diabetes mellitus, age, phosphate, triglyceride, C-reactive protein, white blood cells, and interventricular septum thickness. The time-dependent AUROCs for predicting 3-, 5-, and 10-year cardiovascular event occurrence risk were 0.836, 0.845, and 0.869, respectively. The nomogram showed satisfactory prediction performance (C-index: 0.808, 95% confidence interval: 0.773–0.844) and was well-calibrated. The results were further confirmed by 10-fold cross-validation and hold-out validation (C-index: 0.794 and 0.798, respectively).Conclusions: On the basis of several easy-to-detect clinical parameters, we developed a simple and useful nomogram for predicting cardiovascular risk in long-term hemodialysis patients that is of potential value for clinical application.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mumumu关注了科研通微信公众号
刚刚
2秒前
2秒前
丰富黄豆发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
3秒前
善学以致用应助阔达静曼采纳,获得10
4秒前
千羽汐发布了新的文献求助10
4秒前
语物完成签到,获得积分10
6秒前
6秒前
领导范儿应助hui采纳,获得10
6秒前
李娅发布了新的文献求助10
6秒前
6秒前
BRADp发布了新的文献求助10
7秒前
小包包发布了新的文献求助50
7秒前
万能图书馆应助乔乔采纳,获得10
7秒前
77完成签到,获得积分10
8秒前
9秒前
哈哈哈发布了新的文献求助10
10秒前
斯文败类应助e746700020采纳,获得10
10秒前
12秒前
迷路雨寒应助111111采纳,获得10
12秒前
14秒前
小青椒应助丰富黄豆采纳,获得30
14秒前
14秒前
阔达静曼发布了新的文献求助10
14秒前
15秒前
16秒前
Qingyong21应助mumumu采纳,获得30
18秒前
李煜琛发布了新的文献求助10
19秒前
oiu发布了新的文献求助10
19秒前
冰淇淋发布了新的文献求助10
19秒前
19秒前
19秒前
20秒前
hhhhh发布了新的文献求助10
20秒前
隐形曼青应助小包包采纳,获得10
20秒前
科研小白鼠完成签到,获得积分10
21秒前
panjunlu发布了新的文献求助30
21秒前
21秒前
无极微光应助科研通管家采纳,获得20
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5679900
求助须知:如何正确求助?哪些是违规求助? 4994585
关于积分的说明 15171123
捐赠科研通 4839670
什么是DOI,文献DOI怎么找? 2593541
邀请新用户注册赠送积分活动 1546594
关于科研通互助平台的介绍 1504721