统计物理学
物理
人工神经网络
计算机科学
动力学(音乐)
分子动力学
非线性系统
混乱的
作者
Xiaoliu Zhang,Xiaobing Chen,Daniel G. Kuroda
摘要
The description of frequency fluctuations for highly coupled vibrational transitions has been a challenging problem in physical chemistry. In particular, the complexity of their vibrational Hamiltonian does not allow us to directly derive the time evolution of vibrational frequencies for these systems. In this paper, we present a new approach to this problem by exploiting the artificial neural network to describe the vibrational frequencies without relying on the deconstruction of the vibrational Hamiltonian. To this end, we first explored the use of the methodology to predict the frequency fluctuations of the amide I mode of N-methylacetamide in water. The results show good performance compared with the previous experimental and theoretical results. In the second part, the neural network approach is used to investigate the frequency fluctuations of the highly coupled carbonyl stretch modes for the organic carbonates in the solvation shell of the lithium ion. In this case, the frequency fluctuation predicted by the neural networks shows a good agreement with the experimental results, which suggests that this model can be used to describe the dynamics of the frequency in highly coupled transitions.
科研通智能强力驱动
Strongly Powered by AbleSci AI