抗生素
泰乐菌素
废水
土霉素
流出物
污水处理
磺胺甲恶唑
甲氧苄啶
生物
动物科学
微生物学
兽医学
环境科学
环境工程
医学
作者
Nurul 'Azyyati Sabri,Heike Schmitt,B.M. van der Zaan,H.W. Gerritsen,H.H.M. Rijnaarts,Alette Langenhoff
标识
DOI:10.1016/j.scitotenv.2021.147368
摘要
Additional treatment of wastewater, such as constructed wetlands (CWs), is a possible solution to reduce the discharge of antibiotics and antibiotic resistance genes (ARGs) from households and industry to the environment. This study aims to investigate the occurrence and removal of antibiotics and ARGs by two full scale CWs operated at different hydraulic retention times (HRT), namely 1 day and 3 days. Both CWs were receiving the same wastewater treatment plant (WWTP) effluent. Temporally and spatially distributed sampling of water and sediment was conducted for one year and samples were analyzed for antibiotics and ARGs by using LC-MS/MS and qPCR. Results showed that both CWs removed antibiotics significantly with a comparable overall removal of 28%–100%, depending on the type of antibiotics. However, some of the antibiotics showed higher concentration after the CW treatment. Five antibiotics (tiamulin, tylosin, oxytetracycline, sulfamethoxazole and trimethoprim) were the most abundant (>1500 ng/l on average) in winter. Meanwhile, ermB was the most abundant (average of 5.0 log) in winter compared to summer (average of 3.5 log). Other ARGs did not show a significant increase or decrease between winter and summer. ARGs were removed from the wastewater by 0.8 to 1.5 log. The HRT did not influence the removal of either the antibiotics or the ARGs. A strong correlation was found between sul genes and intI1. The results also revealed a positive and a negative relationship from sampling point 1 to sampling point 5: a positive relation between abundance of antibiotics, ARGs, and of NO3–N, NH4–N, TP, COD and a negative relation between antibiotics, ARGs and temperature. This relationship showed the effect between antibiotics and ARGs concentrations with physicochemical parameters and nutrients. The ability of CWs to reduce the input of micropollutants into the environment makes CWs a potential post treatment to WWTP.
科研通智能强力驱动
Strongly Powered by AbleSci AI