A novel data-driven method for structural health monitoring under ambient vibration and high-dimensional features by robust multidimensional scaling

结构健康监测 极值理论 计算机科学 算法 过度拟合 恒虚警率 广义极值分布 威布尔分布 分段 自回归模型 数据挖掘 数学 人工智能 统计 工程类 结构工程 数学分析 人工神经网络
作者
Alireza Entezami,Hassan Sarmadi,M. Salar,Carlo De Michele,Ali Arslan
出处
期刊:Structural Health Monitoring-an International Journal [SAGE]
卷期号:20 (5): 2758-2777 被引量:34
标识
DOI:10.1177/1475921720973953
摘要

Dealing with the problem of large volumes of high-dimensional features and detecting damage under ambient vibration are critical to structural health monitoring. To address these challenges, this article proposes a novel data-driven method for early damage detection of civil engineering structures by robust multidimensional scaling. The proposed method consists of some simple but effective computational parts including a segmentation process, a pairwise distance calculation, an iterative algorithm regarding robust multidimensional scaling, a matrix vectorization procedure, and a Euclidean norm computation. AutoRegressive Moving Average models are fitted to vibration time-domain responses caused by ambient excitations to extract the model residuals as high-dimensional features. In order to increase the reliability of damage detection and avoid any false alarm, the extreme value theory is considered to determine a reliable threshold limit. However, the selection of an appropriate extreme value distribution is crucial and troublesome. To cope with this limitation, this article introduces the generalized extreme value distribution and its shape parameter for choosing the best extreme value model among Gumbel, Fréchet, and Weibull distributions. The main contributions of this article include developing a novel data-driven strategy for early damage detection and addressing the limitation of using high-dimensional features. Experimental data sets of two well-known civil structures are utilized to validate the proposed method along with some comparative studies. Results demonstrate that the proposed data-driven method in conjunction with the extreme value theory is highly able to detect damage under ambient vibration and high-dimensional features.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
木子发布了新的文献求助10
刚刚
十二完成签到 ,获得积分10
1秒前
1秒前
1秒前
李健应助碎月采纳,获得10
1秒前
情怀应助waddles采纳,获得20
1秒前
2秒前
2秒前
www完成签到 ,获得积分10
3秒前
dzll完成签到,获得积分10
3秒前
3秒前
练习者完成签到,获得积分10
3秒前
qaz123完成签到,获得积分10
3秒前
bkagyin应助luqian采纳,获得10
4秒前
爆米花应助酷炫的傲易采纳,获得10
4秒前
acchangg完成签到,获得积分10
4秒前
逗逗豆芽发布了新的文献求助10
4秒前
JamesPei应助SS采纳,获得10
5秒前
5秒前
liv发布了新的文献求助10
5秒前
顺利翼发布了新的文献求助10
6秒前
guanxin完成签到 ,获得积分10
6秒前
6秒前
一颗诗人的心完成签到,获得积分20
6秒前
何事惊慌发布了新的文献求助10
6秒前
7秒前
小白完成签到,获得积分10
7秒前
左丘冥完成签到,获得积分10
7秒前
刘云完成签到 ,获得积分10
7秒前
Escanor发布了新的文献求助50
8秒前
8秒前
心想事陈发布了新的文献求助10
8秒前
111完成签到,获得积分10
9秒前
9秒前
丘比特应助慕容飞凤采纳,获得10
9秒前
9秒前
行宇完成签到,获得积分10
10秒前
及尔发布了新的文献求助10
10秒前
lalal完成签到,获得积分20
11秒前
elephant51发布了新的文献求助10
11秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
中国氢能技术发展路线图研究 500
Communist propaganda: a fact book, 1957-1958 500
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3167994
求助须知:如何正确求助?哪些是违规求助? 2819430
关于积分的说明 7926432
捐赠科研通 2479299
什么是DOI,文献DOI怎么找? 1320689
科研通“疑难数据库(出版商)”最低求助积分说明 632891
版权声明 602443