Dynamic Hand Gesture Recognition Based on Signals From Specialized Data Glove and Deep Learning Algorithms

卷积神经网络 计算机科学 有线手套 手势 手势识别 人工智能 残余物 深度学习 卷积(计算机科学) 手语 模式识别(心理学) 可穿戴计算机 语音识别 算法 计算机视觉 人工神经网络 哲学 嵌入式系统 语言学
作者
Yongfeng Dong,Jielong Liu,Wenjie Yan
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:70: 1-14 被引量:60
标识
DOI:10.1109/tim.2021.3077967
摘要

Gesture recognition as a natural, convenient and recognizable way has been received more and more attention on human-machine interaction (HMI) recently. However, visual-based gesture recognition methods are often restricted by environments and classical wearable device-based strategies are suffered from relatively low accuracy or the complicated structures. In this study, we first design a low-cost and efficient data glove with simple hardware structure to capture finger movement and bending simultaneously. Second, a novel dynamic hand gesture recognition algorithm (DGDL-GR) is proposed to recognize human dynamic sign language, in which a fusion model of convolutional neural network (fCNN) and generic temporal convolutional network (TCN) is fully utilized. The fCNN (fusion of 1-D CNN and 2-D CNN) is proposed to extract time-domain features of finger resistance movement and spatial domain features of finger resistance bending simultaneously. Moreover, due to the superiorities of TCN in sequence modeling task, this work proposes a novel hand gesture recognition method based on the TCN, which includes causal convolution, dilation convolution, and a residual network with appropriate layers. Both long- and short-time dependencies of the hand gesture features are deeply mined and classified in the end. Results of extensive experiments have demonstrated that the proposed DGDL-GR algorithm outperforms many state-of-the-art algorithms on the measure of accuracy, F1 score, precision score, and recall score with the real-world dataset. Moreover, the number of residual blocks and some key hyperparameters of the proposed DGDL-GR algorithm has been studied thoroughly in this work.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
婷玉发布了新的文献求助10
刚刚
英俊的铭应助man采纳,获得10
刚刚
斯文败类应助善良海云采纳,获得10
刚刚
刚刚
1秒前
简单发布了新的文献求助10
1秒前
1秒前
领导范儿应助MOD采纳,获得10
1秒前
2秒前
2秒前
SciGPT应助stop here采纳,获得30
3秒前
3秒前
Sandy完成签到 ,获得积分10
3秒前
4秒前
谢耳朵讲中文完成签到,获得积分10
5秒前
5秒前
花花发布了新的文献求助10
5秒前
恬227发布了新的文献求助10
6秒前
NexusExplorer应助BBBBonnie采纳,获得10
6秒前
7秒前
烟花应助1111采纳,获得10
7秒前
panjunlu发布了新的文献求助10
7秒前
7秒前
丘比特应助长岛的雪采纳,获得10
7秒前
binbin完成签到,获得积分10
8秒前
8秒前
8秒前
内向的火车完成签到 ,获得积分10
8秒前
1111完成签到,获得积分10
10秒前
ll发布了新的文献求助10
11秒前
丰富宝马发布了新的文献求助10
11秒前
lijiayu完成签到,获得积分10
11秒前
婷玉完成签到,获得积分10
11秒前
情怀应助曹志毅采纳,获得10
12秒前
迷人问兰发布了新的文献求助200
12秒前
1111发布了新的文献求助10
13秒前
所所应助zip采纳,获得10
13秒前
13秒前
恬227完成签到,获得积分10
14秒前
汽水完成签到,获得积分10
14秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951583
求助须知:如何正确求助?哪些是违规求助? 3496980
关于积分的说明 11085596
捐赠科研通 3227413
什么是DOI,文献DOI怎么找? 1784413
邀请新用户注册赠送积分活动 868495
科研通“疑难数据库(出版商)”最低求助积分说明 801154