Dynamic Hand Gesture Recognition Based on Signals From Specialized Data Glove and Deep Learning Algorithms

卷积神经网络 计算机科学 有线手套 手势 手势识别 人工智能 残余物 深度学习 卷积(计算机科学) 手语 模式识别(心理学) 可穿戴计算机 语音识别 算法 计算机视觉 人工神经网络 哲学 嵌入式系统 语言学
作者
Yongfeng Dong,Jielong Liu,Wenjie Yan
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:70: 1-14 被引量:60
标识
DOI:10.1109/tim.2021.3077967
摘要

Gesture recognition as a natural, convenient and recognizable way has been received more and more attention on human-machine interaction (HMI) recently. However, visual-based gesture recognition methods are often restricted by environments and classical wearable device-based strategies are suffered from relatively low accuracy or the complicated structures. In this study, we first design a low-cost and efficient data glove with simple hardware structure to capture finger movement and bending simultaneously. Second, a novel dynamic hand gesture recognition algorithm (DGDL-GR) is proposed to recognize human dynamic sign language, in which a fusion model of convolutional neural network (fCNN) and generic temporal convolutional network (TCN) is fully utilized. The fCNN (fusion of 1-D CNN and 2-D CNN) is proposed to extract time-domain features of finger resistance movement and spatial domain features of finger resistance bending simultaneously. Moreover, due to the superiorities of TCN in sequence modeling task, this work proposes a novel hand gesture recognition method based on the TCN, which includes causal convolution, dilation convolution, and a residual network with appropriate layers. Both long- and short-time dependencies of the hand gesture features are deeply mined and classified in the end. Results of extensive experiments have demonstrated that the proposed DGDL-GR algorithm outperforms many state-of-the-art algorithms on the measure of accuracy, F1 score, precision score, and recall score with the real-world dataset. Moreover, the number of residual blocks and some key hyperparameters of the proposed DGDL-GR algorithm has been studied thoroughly in this work.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
37927发布了新的文献求助10
刚刚
刚刚
forgodssake发布了新的文献求助10
1秒前
CodeCraft应助斯文谷秋采纳,获得20
3秒前
zhaoyunhui12发布了新的文献求助10
3秒前
pluto应助麻雀采纳,获得10
3秒前
研友_VZG7GZ应助温暖砖头采纳,获得10
4秒前
小可爱完成签到,获得积分10
5秒前
zhouchen发布了新的文献求助10
5秒前
张世纪发布了新的文献求助10
6秒前
6秒前
6秒前
7秒前
7秒前
8秒前
9秒前
dddddd关注了科研通微信公众号
9秒前
gdd完成签到,获得积分10
10秒前
四火发布了新的文献求助10
10秒前
之风百度完成签到,获得积分20
10秒前
研友_LBKR9n完成签到,获得积分10
11秒前
maox1aoxin应助神勇的雅香采纳,获得50
11秒前
11秒前
红叶发布了新的文献求助10
11秒前
英姑应助贵金属LiLi采纳,获得10
11秒前
Satoru发布了新的文献求助10
12秒前
lierikafei发布了新的文献求助10
12秒前
13秒前
13秒前
zhouchen完成签到,获得积分10
14秒前
14秒前
李大姐完成签到,获得积分20
15秒前
张世纪完成签到,获得积分10
16秒前
沁阳完成签到,获得积分10
17秒前
17秒前
Ava应助初余采纳,获得10
17秒前
所所应助guanyu108采纳,获得10
17秒前
judy007应助cometx采纳,获得10
17秒前
18秒前
天天快乐应助lcc采纳,获得10
19秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
SIS-ISO/IEC TS 27100:2024 Information technology — Cybersecurity — Overview and concepts (ISO/IEC TS 27100:2020, IDT)(Swedish Standard) 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3232703
求助须知:如何正确求助?哪些是违规求助? 2879469
关于积分的说明 8211416
捐赠科研通 2546954
什么是DOI,文献DOI怎么找? 1376476
科研通“疑难数据库(出版商)”最低求助积分说明 647624
邀请新用户注册赠送积分活动 623003