Dynamic Hand Gesture Recognition Based on Signals From Specialized Data Glove and Deep Learning Algorithms

卷积神经网络 计算机科学 有线手套 手势 手势识别 人工智能 残余物 深度学习 卷积(计算机科学) 手语 模式识别(心理学) 可穿戴计算机 语音识别 算法 计算机视觉 人工神经网络 哲学 嵌入式系统 语言学
作者
Yongfeng Dong,Jielong Liu,Wenjie Yan
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:70: 1-14 被引量:60
标识
DOI:10.1109/tim.2021.3077967
摘要

Gesture recognition as a natural, convenient and recognizable way has been received more and more attention on human-machine interaction (HMI) recently. However, visual-based gesture recognition methods are often restricted by environments and classical wearable device-based strategies are suffered from relatively low accuracy or the complicated structures. In this study, we first design a low-cost and efficient data glove with simple hardware structure to capture finger movement and bending simultaneously. Second, a novel dynamic hand gesture recognition algorithm (DGDL-GR) is proposed to recognize human dynamic sign language, in which a fusion model of convolutional neural network (fCNN) and generic temporal convolutional network (TCN) is fully utilized. The fCNN (fusion of 1-D CNN and 2-D CNN) is proposed to extract time-domain features of finger resistance movement and spatial domain features of finger resistance bending simultaneously. Moreover, due to the superiorities of TCN in sequence modeling task, this work proposes a novel hand gesture recognition method based on the TCN, which includes causal convolution, dilation convolution, and a residual network with appropriate layers. Both long- and short-time dependencies of the hand gesture features are deeply mined and classified in the end. Results of extensive experiments have demonstrated that the proposed DGDL-GR algorithm outperforms many state-of-the-art algorithms on the measure of accuracy, F1 score, precision score, and recall score with the real-world dataset. Moreover, the number of residual blocks and some key hyperparameters of the proposed DGDL-GR algorithm has been studied thoroughly in this work.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助Jenny采纳,获得10
刚刚
limin完成签到,获得积分10
1秒前
1秒前
风格完成签到,获得积分10
2秒前
情怀应助专心搞学术采纳,获得20
3秒前
3秒前
zeke发布了新的文献求助10
3秒前
不爱吃糖发布了新的文献求助10
4秒前
852应助冷傲迎梦采纳,获得10
5秒前
陶醉觅夏发布了新的文献求助200
6秒前
6秒前
exile完成签到,获得积分10
7秒前
朱一龙发布了新的文献求助10
7秒前
mawenting完成签到 ,获得积分10
9秒前
zeke完成签到,获得积分10
10秒前
科研通AI5应助solobang采纳,获得10
11秒前
11秒前
小宇OvO发布了新的文献求助10
12秒前
12秒前
忘羡222完成签到,获得积分10
12秒前
专一发布了新的文献求助10
14秒前
跳跃曼文完成签到,获得积分10
15秒前
干将莫邪完成签到,获得积分10
16秒前
SYLH应助exile采纳,获得10
16秒前
小二郎应助魔幻的从梦采纳,获得10
17秒前
18秒前
雪鸽鸽发布了新的文献求助10
18秒前
19秒前
20秒前
20秒前
21秒前
科研通AI5应助朱一龙采纳,获得30
22秒前
SharonDu完成签到 ,获得积分10
23秒前
ayin完成签到,获得积分10
23秒前
24秒前
24秒前
啦啦啦完成签到,获得积分10
24秒前
coffee发布了新的文献求助10
25秒前
25秒前
科研混子发布了新的文献求助10
25秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824