已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Dynamic Hand Gesture Recognition Based on Signals From Specialized Data Glove and Deep Learning Algorithms

卷积神经网络 计算机科学 有线手套 手势 手势识别 人工智能 残余物 深度学习 卷积(计算机科学) 手语 模式识别(心理学) 可穿戴计算机 语音识别 算法 计算机视觉 人工神经网络 哲学 嵌入式系统 语言学
作者
Yongfeng Dong,Jielong Liu,Wenjie Yan
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:70: 1-14 被引量:60
标识
DOI:10.1109/tim.2021.3077967
摘要

Gesture recognition as a natural, convenient and recognizable way has been received more and more attention on human-machine interaction (HMI) recently. However, visual-based gesture recognition methods are often restricted by environments and classical wearable device-based strategies are suffered from relatively low accuracy or the complicated structures. In this study, we first design a low-cost and efficient data glove with simple hardware structure to capture finger movement and bending simultaneously. Second, a novel dynamic hand gesture recognition algorithm (DGDL-GR) is proposed to recognize human dynamic sign language, in which a fusion model of convolutional neural network (fCNN) and generic temporal convolutional network (TCN) is fully utilized. The fCNN (fusion of 1-D CNN and 2-D CNN) is proposed to extract time-domain features of finger resistance movement and spatial domain features of finger resistance bending simultaneously. Moreover, due to the superiorities of TCN in sequence modeling task, this work proposes a novel hand gesture recognition method based on the TCN, which includes causal convolution, dilation convolution, and a residual network with appropriate layers. Both long- and short-time dependencies of the hand gesture features are deeply mined and classified in the end. Results of extensive experiments have demonstrated that the proposed DGDL-GR algorithm outperforms many state-of-the-art algorithms on the measure of accuracy, F1 score, precision score, and recall score with the real-world dataset. Moreover, the number of residual blocks and some key hyperparameters of the proposed DGDL-GR algorithm has been studied thoroughly in this work.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕青应助徐沛采纳,获得10
4秒前
吼吼哈嘿发布了新的文献求助10
7秒前
不安的松完成签到 ,获得积分10
7秒前
9秒前
hush发布了新的文献求助10
10秒前
Maymay发布了新的文献求助10
10秒前
Lucas应助光亮鞋子采纳,获得10
10秒前
顾矜应助冷酷的依霜采纳,获得10
12秒前
陆上飞完成签到,获得积分10
13秒前
天天快乐应助hush采纳,获得10
16秒前
24秒前
xcltzh2517完成签到,获得积分10
25秒前
科研小趴菜完成签到 ,获得积分10
28秒前
CCrain完成签到 ,获得积分10
31秒前
伟少完成签到,获得积分10
31秒前
asd1576562308完成签到 ,获得积分10
33秒前
眼睛大的薯片完成签到 ,获得积分10
37秒前
完美世界应助科研通管家采纳,获得10
45秒前
深情安青应助科研通管家采纳,获得10
45秒前
浮游应助科研通管家采纳,获得10
45秒前
浮游应助科研通管家采纳,获得10
45秒前
48秒前
Monicadd完成签到 ,获得积分10
54秒前
58秒前
YBR完成签到 ,获得积分10
59秒前
大个应助pkin采纳,获得10
1分钟前
三岁完成签到 ,获得积分10
1分钟前
Self-made发布了新的文献求助10
1分钟前
qqq完成签到,获得积分10
1分钟前
潇洒的凡灵完成签到 ,获得积分10
1分钟前
木由发布了新的文献求助10
1分钟前
SSS完成签到,获得积分10
1分钟前
27小天使发布了新的文献求助10
1分钟前
浮游应助honia采纳,获得10
1分钟前
Self-made完成签到,获得积分10
1分钟前
胡茶茶完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
陈欣瑶完成签到 ,获得积分10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Kolmogorov, A. N. Qualitative study of mathematical models of populations. Problems of Cybernetics, 1972, 25, 100-106 800
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5301583
求助须知:如何正确求助?哪些是违规求助? 4449070
关于积分的说明 13847752
捐赠科研通 4335139
什么是DOI,文献DOI怎么找? 2380126
邀请新用户注册赠送积分活动 1375107
关于科研通互助平台的介绍 1341130