AI-based pathology predicts origins for cancers of unknown primary

一致性 鉴别诊断 医学 医学诊断 病理 数字化病理学 人工智能 计算机科学 生物 计算生物学 生物信息学
作者
Ming Y. Lu,Tiffany Chen,Drew F. K. Williamson,Melissa Zhao,Maha Shady,Jana Lipková,Faisal Mahmood
出处
期刊:Nature [Springer Nature]
卷期号:594 (7861): 106-110 被引量:206
标识
DOI:10.1038/s41586-021-03512-4
摘要

Cancer of unknown primary (CUP) is an enigmatic group of diagnoses where the primary anatomical site of tumor origin cannot be determined. This poses a significant challenge since modern therapeutics such as chemotherapy regimen and immune checkpoint inhibitors are specific to the primary tumor. Recent work has focused on using genomics and transcriptomics for identification of tumor origins. However, genomic testing is not conducted for every patient and lacks clinical penetration in low resource settings. Herein, to overcome these challenges, we present a deep learning-based computational pathology algorithm-TOAD-that can provide a differential diagnosis for CUP using routinely acquired histology slides. We used 17,486 gigapixel whole slide images with known primaries spread over 18 common origins to train a multi-task deep model to simultaneously identify the tumor as primary or metastatic and predict its site of origin. We tested our model on an internal test set of 4,932 cases with known primaries and achieved a top-1 accuracy of 0.84, a top-3 accuracy of 0.94 while on our external test set of 662 cases from 202 different hospitals, it achieved a top-1 and top-3 accuracy of 0.79 and 0.93 respectively. We further curated a dataset of 717 CUP cases from 151 different medical centers and identified a subset of 290 cases for which a differential diagnosis was assigned. Our model predictions resulted in concordance for 50% of cases (\k{appa}=0.4 when adjusted for agreement by chance) and a top-3 agreement of 75%. Our proposed method can be used as an assistive tool to assign differential diagnosis to complicated metastatic and CUP cases and could be used in conjunction with or in lieu of immunohistochemical analysis and extensive diagnostic work-ups to reduce the occurrence of CUP.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
DADA完成签到,获得积分10
3秒前
ZY完成签到,获得积分10
3秒前
Anoxia完成签到,获得积分10
3秒前
4秒前
压缩应助凡仔采纳,获得10
5秒前
慕青应助感性的又槐采纳,获得10
5秒前
赘婿应助Ryan123采纳,获得10
5秒前
7秒前
尊敬雨双完成签到,获得积分10
8秒前
10秒前
zyb发布了新的文献求助200
12秒前
nice1334完成签到,获得积分10
12秒前
乐乐应助派大星采纳,获得10
13秒前
鲤鱼完成签到 ,获得积分10
15秒前
AIA7发布了新的文献求助10
15秒前
抱小熊睡觉完成签到,获得积分10
17秒前
19秒前
20秒前
无限的高烽完成签到,获得积分10
21秒前
22秒前
AIA7完成签到,获得积分10
22秒前
尊敬雨双发布了新的文献求助10
22秒前
23秒前
小茹发布了新的文献求助10
23秒前
beyondmin发布了新的文献求助10
26秒前
28秒前
Ryan123发布了新的文献求助10
28秒前
haha完成签到,获得积分10
29秒前
orixero应助yy采纳,获得30
29秒前
32秒前
34秒前
Pioz发布了新的文献求助10
34秒前
小茹完成签到,获得积分10
35秒前
35秒前
37秒前
37秒前
木子完成签到 ,获得积分10
38秒前
38秒前
五香完成签到 ,获得积分10
39秒前
高分求助中
Shape Determination of Large Sedimental Rock Fragments 2000
Sustainability in Tides Chemistry 2000
Wirkstoffdesign 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3128973
求助须知:如何正确求助?哪些是违规求助? 2779757
关于积分的说明 7744663
捐赠科研通 2434935
什么是DOI,文献DOI怎么找? 1293790
科研通“疑难数据库(出版商)”最低求助积分说明 623432
版权声明 600530