AI-based pathology predicts origins for cancers of unknown primary

一致性 鉴别诊断 医学 医学诊断 病理 数字化病理学 人工智能 计算机科学 生物 计算生物学 生物信息学
作者
Ming Y. Lu,Tiffany Chen,Drew F. K. Williamson,Melissa Zhao,Maha Shady,Jana Lipková,Faisal Mahmood
出处
期刊:Nature [Nature Portfolio]
卷期号:594 (7861): 106-110 被引量:233
标识
DOI:10.1038/s41586-021-03512-4
摘要

Cancer of unknown primary (CUP) is an enigmatic group of diagnoses where the primary anatomical site of tumor origin cannot be determined. This poses a significant challenge since modern therapeutics such as chemotherapy regimen and immune checkpoint inhibitors are specific to the primary tumor. Recent work has focused on using genomics and transcriptomics for identification of tumor origins. However, genomic testing is not conducted for every patient and lacks clinical penetration in low resource settings. Herein, to overcome these challenges, we present a deep learning-based computational pathology algorithm-TOAD-that can provide a differential diagnosis for CUP using routinely acquired histology slides. We used 17,486 gigapixel whole slide images with known primaries spread over 18 common origins to train a multi-task deep model to simultaneously identify the tumor as primary or metastatic and predict its site of origin. We tested our model on an internal test set of 4,932 cases with known primaries and achieved a top-1 accuracy of 0.84, a top-3 accuracy of 0.94 while on our external test set of 662 cases from 202 different hospitals, it achieved a top-1 and top-3 accuracy of 0.79 and 0.93 respectively. We further curated a dataset of 717 CUP cases from 151 different medical centers and identified a subset of 290 cases for which a differential diagnosis was assigned. Our model predictions resulted in concordance for 50% of cases (\k{appa}=0.4 when adjusted for agreement by chance) and a top-3 agreement of 75%. Our proposed method can be used as an assistive tool to assign differential diagnosis to complicated metastatic and CUP cases and could be used in conjunction with or in lieu of immunohistochemical analysis and extensive diagnostic work-ups to reduce the occurrence of CUP.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
墨影曦遇完成签到,获得积分20
刚刚
悦耳的机器猫完成签到,获得积分10
刚刚
田様应助毛毛虫PhD采纳,获得10
刚刚
郭丰发布了新的文献求助10
刚刚
量子星尘发布了新的文献求助10
刚刚
无辜冷风发布了新的文献求助10
1秒前
在水一方应助超级小子采纳,获得10
1秒前
质延完成签到,获得积分10
1秒前
啦啦啦啦啦啦完成签到,获得积分0
2秒前
liangliang发布了新的文献求助10
2秒前
kyuyami完成签到,获得积分10
3秒前
3秒前
牟真完成签到,获得积分10
4秒前
wenxian完成签到,获得积分10
4秒前
可爱的函函应助LOONG采纳,获得10
5秒前
yang完成签到,获得积分10
5秒前
estrella完成签到 ,获得积分10
6秒前
bonnieeee777完成签到,获得积分10
6秒前
dddlll完成签到,获得积分10
7秒前
maofeng完成签到,获得积分10
7秒前
Jasper应助lkk采纳,获得10
8秒前
ding应助南啦啦啦采纳,获得10
8秒前
8秒前
10秒前
10秒前
所所应助落后钢铁侠采纳,获得10
10秒前
墨影曦遇发布了新的文献求助10
10秒前
10秒前
11秒前
11秒前
clientprogram发布了新的文献求助30
11秒前
11秒前
斯文败类应助六点一横采纳,获得10
11秒前
小二郎应助冯123采纳,获得10
11秒前
Sam完成签到,获得积分10
12秒前
xl发布了新的文献求助50
12秒前
12秒前
Jasper应助毛子涵采纳,获得10
14秒前
Volta_zz发布了新的文献求助10
14秒前
14秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Effective Learning and Mental Wellbeing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3974426
求助须知:如何正确求助?哪些是违规求助? 3518788
关于积分的说明 11195842
捐赠科研通 3254946
什么是DOI,文献DOI怎么找? 1797649
邀请新用户注册赠送积分活动 877037
科研通“疑难数据库(出版商)”最低求助积分说明 806130