AI-based pathology predicts origins for cancers of unknown primary

一致性 鉴别诊断 医学 医学诊断 病理 数字化病理学 人工智能 计算机科学 生物 计算生物学 生物信息学
作者
Ming Y. Lu,Tiffany Chen,Drew F. K. Williamson,Melissa Zhao,Maha Shady,Jana Lipková,Faisal Mahmood
出处
期刊:Nature [Springer Nature]
卷期号:594 (7861): 106-110 被引量:239
标识
DOI:10.1038/s41586-021-03512-4
摘要

Cancer of unknown primary (CUP) is an enigmatic group of diagnoses where the primary anatomical site of tumor origin cannot be determined. This poses a significant challenge since modern therapeutics such as chemotherapy regimen and immune checkpoint inhibitors are specific to the primary tumor. Recent work has focused on using genomics and transcriptomics for identification of tumor origins. However, genomic testing is not conducted for every patient and lacks clinical penetration in low resource settings. Herein, to overcome these challenges, we present a deep learning-based computational pathology algorithm-TOAD-that can provide a differential diagnosis for CUP using routinely acquired histology slides. We used 17,486 gigapixel whole slide images with known primaries spread over 18 common origins to train a multi-task deep model to simultaneously identify the tumor as primary or metastatic and predict its site of origin. We tested our model on an internal test set of 4,932 cases with known primaries and achieved a top-1 accuracy of 0.84, a top-3 accuracy of 0.94 while on our external test set of 662 cases from 202 different hospitals, it achieved a top-1 and top-3 accuracy of 0.79 and 0.93 respectively. We further curated a dataset of 717 CUP cases from 151 different medical centers and identified a subset of 290 cases for which a differential diagnosis was assigned. Our model predictions resulted in concordance for 50% of cases (\k{appa}=0.4 when adjusted for agreement by chance) and a top-3 agreement of 75%. Our proposed method can be used as an assistive tool to assign differential diagnosis to complicated metastatic and CUP cases and could be used in conjunction with or in lieu of immunohistochemical analysis and extensive diagnostic work-ups to reduce the occurrence of CUP.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
洋溢完成签到,获得积分10
1秒前
是盐的学术号吖完成签到 ,获得积分10
2秒前
zxx完成签到 ,获得积分10
3秒前
kanong完成签到,获得积分0
8秒前
gxzsdf完成签到 ,获得积分10
11秒前
zm完成签到 ,获得积分10
12秒前
付其喜完成签到 ,获得积分10
14秒前
玺青一生完成签到 ,获得积分10
14秒前
15秒前
量子星尘发布了新的文献求助10
20秒前
屈煜彬完成签到 ,获得积分10
21秒前
务实的一斩完成签到 ,获得积分10
24秒前
量子星尘发布了新的文献求助10
24秒前
司空以蕊完成签到 ,获得积分10
27秒前
29秒前
藏锋完成签到 ,获得积分10
30秒前
单小芫完成签到 ,获得积分10
31秒前
然大宝发布了新的文献求助10
34秒前
oleskarabach发布了新的文献求助10
35秒前
科研通AI6应助zhang采纳,获得10
41秒前
42秒前
Cala洛~完成签到 ,获得积分10
43秒前
幼儿园扛把子完成签到 ,获得积分10
44秒前
量子星尘发布了新的文献求助10
49秒前
壳聚糖完成签到 ,获得积分10
50秒前
量子星尘发布了新的文献求助10
50秒前
纸条条完成签到 ,获得积分10
1分钟前
elsa622完成签到 ,获得积分10
1分钟前
陈M雯完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
痴情的靖柔完成签到 ,获得积分10
1分钟前
clwh2006完成签到,获得积分10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
无花果应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
852应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Digitizing Enlightenment: Digital Humanities and the Transformation of Eighteenth-Century Studies 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5671500
求助须知:如何正确求助?哪些是违规求助? 4918822
关于积分的说明 15134852
捐赠科研通 4830227
什么是DOI,文献DOI怎么找? 2586973
邀请新用户注册赠送积分活动 1540582
关于科研通互助平台的介绍 1498856