AI-based pathology predicts origins for cancers of unknown primary

一致性 鉴别诊断 医学 医学诊断 病理 数字化病理学 人工智能 计算机科学 生物 计算生物学 生物信息学
作者
Ming Y. Lu,Tiffany Chen,Drew F. K. Williamson,Melissa Zhao,Maha Shady,Jana Lipková,Faisal Mahmood
出处
期刊:Nature [Nature Portfolio]
卷期号:594 (7861): 106-110 被引量:233
标识
DOI:10.1038/s41586-021-03512-4
摘要

Cancer of unknown primary (CUP) is an enigmatic group of diagnoses where the primary anatomical site of tumor origin cannot be determined. This poses a significant challenge since modern therapeutics such as chemotherapy regimen and immune checkpoint inhibitors are specific to the primary tumor. Recent work has focused on using genomics and transcriptomics for identification of tumor origins. However, genomic testing is not conducted for every patient and lacks clinical penetration in low resource settings. Herein, to overcome these challenges, we present a deep learning-based computational pathology algorithm-TOAD-that can provide a differential diagnosis for CUP using routinely acquired histology slides. We used 17,486 gigapixel whole slide images with known primaries spread over 18 common origins to train a multi-task deep model to simultaneously identify the tumor as primary or metastatic and predict its site of origin. We tested our model on an internal test set of 4,932 cases with known primaries and achieved a top-1 accuracy of 0.84, a top-3 accuracy of 0.94 while on our external test set of 662 cases from 202 different hospitals, it achieved a top-1 and top-3 accuracy of 0.79 and 0.93 respectively. We further curated a dataset of 717 CUP cases from 151 different medical centers and identified a subset of 290 cases for which a differential diagnosis was assigned. Our model predictions resulted in concordance for 50% of cases (\k{appa}=0.4 when adjusted for agreement by chance) and a top-3 agreement of 75%. Our proposed method can be used as an assistive tool to assign differential diagnosis to complicated metastatic and CUP cases and could be used in conjunction with or in lieu of immunohistochemical analysis and extensive diagnostic work-ups to reduce the occurrence of CUP.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
aike发布了新的文献求助50
2秒前
BQ完成签到,获得积分10
2秒前
Rondab应助万历采纳,获得10
2秒前
moon发布了新的文献求助10
3秒前
3秒前
完美夏天完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
5秒前
6秒前
9秒前
Ava应助眼睛大易文采纳,获得10
9秒前
小汁儿发布了新的文献求助10
9秒前
YooM发布了新的文献求助10
10秒前
mie发布了新的文献求助80
10秒前
10秒前
xxx完成签到,获得积分10
10秒前
云悠水澈完成签到,获得积分10
10秒前
桃花落发布了新的文献求助30
11秒前
ayuelei发布了新的文献求助10
14秒前
hwy发布了新的文献求助10
14秒前
学术小王子完成签到,获得积分10
16秒前
17秒前
manzhouwang完成签到,获得积分10
17秒前
TMOMOR应助王359采纳,获得10
17秒前
18秒前
小全完成签到,获得积分10
18秒前
111完成签到 ,获得积分10
19秒前
20秒前
21秒前
21秒前
釉质牙医完成签到,获得积分10
21秒前
22秒前
YooM发布了新的文献求助30
22秒前
22秒前
23秒前
23秒前
yn发布了新的文献求助10
27秒前
ly发布了新的文献求助10
27秒前
乂氼发布了新的文献求助10
28秒前
SYLH应助高兴的半仙采纳,获得10
29秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3969628
求助须知:如何正确求助?哪些是违规求助? 3514448
关于积分的说明 11174217
捐赠科研通 3249822
什么是DOI,文献DOI怎么找? 1795000
邀请新用户注册赠送积分活动 875537
科研通“疑难数据库(出版商)”最低求助积分说明 804856