AI-based pathology predicts origins for cancers of unknown primary

一致性 鉴别诊断 医学 医学诊断 病理 数字化病理学 人工智能 计算机科学 生物 计算生物学 生物信息学
作者
Ming Lu,Tiffany Chen,Drew F. K. Williamson,Melissa Zhao,Maha Shady,Jana Lipková,Faisal Mahmood
出处
期刊:Nature [Nature Portfolio]
卷期号:594 (7861): 106-110 被引量:229
标识
DOI:10.1038/s41586-021-03512-4
摘要

Cancer of unknown primary (CUP) is an enigmatic group of diagnoses where the primary anatomical site of tumor origin cannot be determined. This poses a significant challenge since modern therapeutics such as chemotherapy regimen and immune checkpoint inhibitors are specific to the primary tumor. Recent work has focused on using genomics and transcriptomics for identification of tumor origins. However, genomic testing is not conducted for every patient and lacks clinical penetration in low resource settings. Herein, to overcome these challenges, we present a deep learning-based computational pathology algorithm-TOAD-that can provide a differential diagnosis for CUP using routinely acquired histology slides. We used 17,486 gigapixel whole slide images with known primaries spread over 18 common origins to train a multi-task deep model to simultaneously identify the tumor as primary or metastatic and predict its site of origin. We tested our model on an internal test set of 4,932 cases with known primaries and achieved a top-1 accuracy of 0.84, a top-3 accuracy of 0.94 while on our external test set of 662 cases from 202 different hospitals, it achieved a top-1 and top-3 accuracy of 0.79 and 0.93 respectively. We further curated a dataset of 717 CUP cases from 151 different medical centers and identified a subset of 290 cases for which a differential diagnosis was assigned. Our model predictions resulted in concordance for 50% of cases (\k{appa}=0.4 when adjusted for agreement by chance) and a top-3 agreement of 75%. Our proposed method can be used as an assistive tool to assign differential diagnosis to complicated metastatic and CUP cases and could be used in conjunction with or in lieu of immunohistochemical analysis and extensive diagnostic work-ups to reduce the occurrence of CUP.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我是老大应助187798采纳,获得10
1秒前
zxy发布了新的文献求助10
2秒前
瘦瘦雅香完成签到 ,获得积分10
3秒前
4秒前
华仔应助molo采纳,获得10
4秒前
卡戎529发布了新的文献求助10
4秒前
5秒前
Akim应助Hh采纳,获得10
7秒前
科研通AI5应助研友_ZeqAxZ采纳,获得10
7秒前
bob驳回了传奇3应助
8秒前
9秒前
187798完成签到,获得积分10
9秒前
小蘑菇应助清辉夜凝采纳,获得10
10秒前
hhhhhhh完成签到,获得积分10
12秒前
12秒前
深情安青应助科研通管家采纳,获得10
12秒前
小二郎应助科研通管家采纳,获得10
12秒前
13秒前
斯文败类应助科研通管家采纳,获得10
13秒前
SYLH应助科研通管家采纳,获得10
13秒前
打打应助科研通管家采纳,获得10
13秒前
共享精神应助科研通管家采纳,获得10
13秒前
187798发布了新的文献求助10
14秒前
雅典娜完成签到,获得积分10
15秒前
15秒前
搜集达人应助nienie采纳,获得10
15秒前
16秒前
16秒前
科研通AI2S应助dou采纳,获得10
16秒前
17秒前
18秒前
明亮的翠风完成签到,获得积分10
18秒前
勤奋的凌翠完成签到 ,获得积分10
19秒前
yyyyyy发布了新的文献求助10
20秒前
Hh发布了新的文献求助10
20秒前
小四发布了新的文献求助10
23秒前
田様应助小橙子采纳,获得10
24秒前
深情安青应助dongdoctor采纳,获得10
26秒前
雨天慢行完成签到 ,获得积分10
27秒前
27秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3745005
求助须知:如何正确求助?哪些是违规求助? 3287963
关于积分的说明 10056553
捐赠科研通 3004141
什么是DOI,文献DOI怎么找? 1649480
邀请新用户注册赠送积分活动 785342
科研通“疑难数据库(出版商)”最低求助积分说明 751049