Compressive spectral image reconstruction using deep prior and low-rank tensor representation

光学 迭代重建 代表(政治) 人工智能 张量(固有定义) 图像(数学) 秩(图论) 图像处理 光谱成像 计算机科学 计算机视觉 物理 数学 几何学 组合数学 政治 政治学 法学
作者
Jorge Bacca,Yesid Fonseca,Henry Argüello
出处
期刊:Applied Optics [Optica Publishing Group]
卷期号:60 (14): 4197-4197 被引量:31
标识
DOI:10.1364/ao.420305
摘要

Compressive spectral imaging (CSI) has emerged as an alternative spectral image acquisition technology, which reduces the number of measurements at the cost of requiring a recovery process. In general, the reconstruction methods are based on hand-crafted priors used as regularizers in optimization algorithms or recent deep neural networks employed as an image generator to learn a non-linear mapping from the low-dimensional compressed measurements to the image space. However, these data-driven methods need many spectral images to obtain good performance. In this work, a deep recovery framework for CSI without training data is presented. The proposed method is based on the fact that the structure of some deep neural networks and an appropriated low-dimensional structure are sufficient to impose a structure of the underlying spectral image from CSI. We analyzed the low-dimension structure via the Tucker representation, modeled in the first net layer. The proposed scheme is obtained by minimizing the $\ell_2$-norm distance between the compressive measurements and the predicted measurements, and the desired recovered spectral image is formed just before the forward operator. Simulated and experimental results verify the effectiveness of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
车轮滚滚完成签到,获得积分10
刚刚
1秒前
很在乎发布了新的文献求助10
1秒前
跳跃乘风完成签到,获得积分10
1秒前
2秒前
2秒前
2秒前
2秒前
FashionBoy应助嗯嗯嗯采纳,获得10
2秒前
iian完成签到,获得积分10
3秒前
严冰蝶完成签到 ,获得积分10
3秒前
3秒前
3秒前
传奇3应助清风徐来采纳,获得10
4秒前
Singularity应助xiaojin采纳,获得10
4秒前
5秒前
喔喔完成签到,获得积分10
5秒前
hsialy完成签到,获得积分10
5秒前
悉达多发布了新的文献求助10
5秒前
wocao发布了新的文献求助200
5秒前
6秒前
充电宝应助薛定谔的猫采纳,获得10
6秒前
乐乐应助光亮的万天采纳,获得10
6秒前
6秒前
星辰大海应助JerryZ采纳,获得10
6秒前
7秒前
dengdeng完成签到,获得积分20
7秒前
orixero应助Dding采纳,获得20
7秒前
jellorio发布了新的文献求助10
8秒前
8秒前
冬嘉发布了新的文献求助10
10秒前
你是我的唯一完成签到,获得积分10
10秒前
wtf52018完成签到,获得积分10
10秒前
Mrwang完成签到,获得积分10
10秒前
Star1983发布了新的文献求助10
10秒前
11秒前
ymlllym发布了新的文献求助10
11秒前
12秒前
12秒前
zql74785发布了新的文献求助10
12秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958693
求助须知:如何正确求助?哪些是违规求助? 3504939
关于积分的说明 11121216
捐赠科研通 3236311
什么是DOI,文献DOI怎么找? 1788726
邀请新用户注册赠送积分活动 871307
科研通“疑难数据库(出版商)”最低求助积分说明 802691