Tin metal oxides SnOx (x = 1, 2) have gained interest as gas-sensing materials. For their applications as high-temperature sensors, however, a better understanding of their temperature dependence sensing responses is needed. In this work, we comparatively quantify the temperature-dependent electronic band gaps and optical properties of SnO2 and SnO using first-principles calculations. Without considering the temperature effect, SnO2 and SnO are predicted to have direct and indirect band gaps of 2.18 and 1.66 eV, respectively, at the PBE + U-GGA level that we employed. The temperature effect on the electronic and optical properties is captured by taking account of the electron–phonon interaction. Band gap renormalization with temperature is calculated via the Allen–Heine–Cardona theory. For both oxides, we find a monotonic decrease in the electronic band gap such that renormalization at zero point (0 K) is ∼−0.17 and ∼−0.52 eV at 1000 K. These results are also analyzed by employing an analytical equation that helps characterize the band gap shift with temperature. In addition, the optical properties at finite temperatures are simulated using the frozen-phonon method that combines electron–phonon coupling with the momentum matrix. As temperature increases, the optical property spectra are smoothed because of the smearing effect, which diminishes optical constants at shorter wavelengths. Our results are of interest for high-temperature functional materials in applications of optical detection.