The great Transformer: Examining the role of large language models in the political economy of AI

政治 社会学 经济 政治经济学 政治学 法学
作者
Dieuwertje Luitse,Wiebke Denkena
出处
期刊:Big Data & Society [SAGE Publishing]
卷期号:8 (2) 被引量:87
标识
DOI:10.1177/20539517211047734
摘要

In recent years, AI research has become more and more computationally demanding. In natural language processing (NLP), this tendency is reflected in the emergence of large language models (LLMs) like GPT-3. These powerful neural network-based models can be used for a range of NLP tasks and their language generation capacities have become so sophisticated that it can be very difficult to distinguish their outputs from human language. LLMs have raised concerns over their demonstrable biases, heavy environmental footprints, and future social ramifications. In December 2020, critical research on LLMs led Google to fire Timnit Gebru, co-lead of the company’s AI Ethics team, which sparked a major public controversy around LLMs and the growing corporate influence over AI research. This article explores the role LLMs play in the political economy of AI as infrastructural components for AI research and development. Retracing the technical developments that have led to the emergence of LLMs, we point out how they are intertwined with the business model of big tech companies and further shift power relations in their favour. This becomes visible through the Transformer, which is the underlying architecture of most LLMs today and started the race for ever bigger models when it was introduced by Google in 2017. Using the example of GPT-3, we shed light on recent corporate efforts to commodify LLMs through paid API access and exclusive licensing, raising questions around monopolization and dependency in a field that is increasingly divided by access to large-scale computing power.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
..完成签到,获得积分10
刚刚
3秒前
4秒前
wdlc发布了新的文献求助10
4秒前
5秒前
5秒前
5秒前
7秒前
9秒前
Shiku发布了新的文献求助10
9秒前
9秒前
传奇3应助leeOOO采纳,获得10
10秒前
量子星尘发布了新的文献求助10
10秒前
10秒前
慢慢的地理人完成签到,获得积分10
14秒前
15秒前
过时的飞鸟完成签到,获得积分10
16秒前
16秒前
17秒前
17秒前
19秒前
19秒前
Akim应助研友_Z1WrgL采纳,获得10
20秒前
冬马完成签到,获得积分20
20秒前
Ava应助冬天雪山茶采纳,获得10
20秒前
量子星尘发布了新的文献求助10
20秒前
22秒前
leeOOO发布了新的文献求助10
22秒前
22秒前
刘蕾发布了新的文献求助10
23秒前
24秒前
科研通AI5应助科研通管家采纳,获得10
24秒前
汉堡包应助科研通管家采纳,获得10
24秒前
Owen应助科研通管家采纳,获得10
25秒前
Owen应助科研通管家采纳,获得10
25秒前
赘婿应助科研通管家采纳,获得10
25秒前
深情安青应助科研通管家采纳,获得10
25秒前
科研通AI5应助科研通管家采纳,获得10
25秒前
汉堡包应助科研通管家采纳,获得10
25秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
ALUMINUM STANDARDS AND DATA 500
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3666163
求助须知:如何正确求助?哪些是违规求助? 3225175
关于积分的说明 9761817
捐赠科研通 2935171
什么是DOI,文献DOI怎么找? 1607459
邀请新用户注册赠送积分活动 759187
科研通“疑难数据库(出版商)”最低求助积分说明 735153