亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

On Breaking Truss-Based Communities

启发式 桁架 计算机科学 图形 理论计算机科学 补语(音乐) 上下界 GSM演进的增强数据速率 算法 组合数学 数学优化 数学 人工智能 数学分析 生物化学 化学 结构工程 互补 工程类 基因 表型
作者
Huiping Chen,Alessio Conte,Roberto Grossi,Grigorios Loukides,Solon P. Pissis,Michelle Sweering
标识
DOI:10.1145/3447548.3467365
摘要

A k-truss is a graph such that each edge is contained in at least k-2 triangles. This notion has attracted much attention, because it models meaningful cohesive subgraphs of a graph. We introduce the problem of identifying a smallest edge subset of a given graph whose removal makes the graph k-truss-free. We also introduce a problem variant where the identified subset contains only edges incident to a given set of nodes and ensures that these nodes are not contained in any k-truss. These problems are directly applicable in communication networks: the identified edges correspond to vital network connections; or in social networks: the identified edges can be hidden by users or sanitized from the output graph. We show that these problems are NP-hard. We thus develop exact exponential-time algorithms to solve them. To process large networks, we also develop heuristics sped up by an efficient data structure for updating the truss decomposition under edge deletions. We complement our heuristics with a lower bound on the size of an optimal solution to rigorously evaluate their effectiveness. Extensive experiments on 10 real-world graphs show that our heuristics are effective (close to the optimal or to the lower bound) and also efficient (up to two orders of magnitude faster than a natural baseline).

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fighting完成签到,获得积分10
2秒前
Jasper应助yg采纳,获得10
5秒前
10秒前
量子星尘发布了新的文献求助10
14秒前
24秒前
月亮完成签到,获得积分10
24秒前
26秒前
FashionBoy应助科研通管家采纳,获得10
30秒前
30秒前
Criminology34应助科研通管家采纳,获得10
30秒前
Criminology34应助科研通管家采纳,获得10
30秒前
Criminology34应助科研通管家采纳,获得10
30秒前
Criminology34应助科研通管家采纳,获得20
30秒前
Criminology34应助科研通管家采纳,获得10
30秒前
Criminology34应助科研通管家采纳,获得10
31秒前
Criminology34应助科研通管家采纳,获得10
31秒前
34秒前
在水一方应助7_2U1采纳,获得10
39秒前
菠萝炒饭不要辣椒完成签到,获得积分10
43秒前
桐桐应助无情的琳采纳,获得10
1分钟前
1分钟前
章鱼完成签到,获得积分10
1分钟前
1分钟前
无情的琳发布了新的文献求助10
1分钟前
2分钟前
2分钟前
CAOHOU应助路漫漫其修远兮采纳,获得10
2分钟前
松林揽月发布了新的文献求助10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Jasper应助路漫漫其修远兮采纳,获得10
2分钟前
万能图书馆应助愿景采纳,获得10
2分钟前
桐桐应助Wei采纳,获得10
2分钟前
2分钟前
7_2U1发布了新的文献求助10
2分钟前
2分钟前
7_2U1完成签到,获得积分20
3分钟前
3分钟前
3分钟前
Panther完成签到,获得积分10
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5723993
求助须知:如何正确求助?哪些是违规求助? 5283171
关于积分的说明 15299496
捐赠科研通 4872203
什么是DOI,文献DOI怎么找? 2616637
邀请新用户注册赠送积分活动 1566530
关于科研通互助平台的介绍 1523401