Modular deep learning enables automated identification of monoclonal cell lines

鉴定(生物学) 计算机科学 模块化设计 人工智能 单克隆抗体 生物 医学 免疫学 程序设计语言 植物 抗体
作者
Brodie Fischbacher,Sarita Hedaya,Brigham J. Hartley,Zhongwei Wang,Gregory Lallos,Dillion Hutson,Matthew Zimmer,Jacob Brammer,Daniel Paull
出处
期刊:Nature Machine Intelligence [Nature Portfolio]
卷期号:3 (7): 632-640 被引量:13
标识
DOI:10.1038/s42256-021-00354-7
摘要

Monoclonalization refers to the isolation and expansion of a single cell derived from a cultured population. This is a valuable step in cell culture that serves to minimize a cell line’s technical variability downstream of cell-altering events, such as reprogramming or gene editing, as well as for processes such as monoclonal antibody development. However, traditional methods for verifying clonality do not scale well, posing a critical obstacle to studies involving large cohorts. Without automated, standardized methods for assessing clonality post hoc, methods involving monoclonalization cannot be reliably upscaled without exacerbating the technical variability of cell lines. Here, we report the design of a deep learning workflow that automatically detects colony presence and identifies clonality from cellular imaging. The workflow, termed Monoqlo, integrates multiple convolutional neural networks and, critically, leverages the chronological directionality of the cell-culturing process. Our algorithm design provides a fully scalable, highly interpretable framework that is capable of analysing industrial data volumes in under an hour using commodity hardware. We focus here on monoclonalization of human induced pluripotent stem cells, but our method is generalizable. Monoqlo standardizes the monoclonalization process, enabling colony selection protocols to be infinitely upscaled while minimizing technical variability. Monoclonalization, the isolation and expansion of a single cell derived from a cultured population, is an essential step in large-scale human cell culture and experiments. A new deep learning-based workflow called Monoqlo automatically detects colony presence and identifies clonality from cellular imaging, enabling single-cell selection protocols to be scalable while minimizing technical variability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
星辰大海应助德国克大夫采纳,获得10
1秒前
宝丁完成签到,获得积分10
2秒前
2秒前
fuws发布了新的文献求助10
2秒前
奶昔完成签到,获得积分10
3秒前
laixiaohui发布了新的文献求助10
5秒前
5秒前
幸福大白发布了新的文献求助10
6秒前
6秒前
lone623应助1234567890采纳,获得10
8秒前
358489228完成签到,获得积分10
8秒前
眯眯眼的篮球完成签到,获得积分10
8秒前
9秒前
CCCCCL发布了新的文献求助10
9秒前
10秒前
RJFENG完成签到,获得积分10
10秒前
11秒前
12秒前
laixiaohui完成签到,获得积分10
15秒前
思源应助壮观的擎采纳,获得10
15秒前
今天不学习明天变垃圾完成签到,获得积分10
15秒前
xuan发布了新的文献求助10
16秒前
华W发布了新的文献求助10
17秒前
17秒前
彭于晏应助西子阳采纳,获得10
17秒前
17秒前
哈哈哈完成签到,获得积分10
18秒前
超级如风完成签到 ,获得积分10
18秒前
19秒前
忧郁老头完成签到,获得积分10
20秒前
20秒前
20秒前
duoduo完成签到,获得积分10
21秒前
chengzi发布了新的文献求助10
22秒前
22秒前
aa发布了新的文献求助10
22秒前
上官若男应助淡定从凝采纳,获得10
22秒前
钇点点完成签到,获得积分10
23秒前
lxseva完成签到,获得积分10
23秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
The Cambridge Handbook of Social Theory 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3999606
求助须知:如何正确求助?哪些是违规求助? 3539056
关于积分的说明 11275756
捐赠科研通 3277833
什么是DOI,文献DOI怎么找? 1807729
邀请新用户注册赠送积分活动 884127
科研通“疑难数据库(出版商)”最低求助积分说明 810142