A disease network‐based deep learning approach for characterizing melanoma

基因组学 黑色素瘤 自编码 深度学习 疾病 计算生物学 计算机科学 人工智能 医学 机器学习 生物 生物信息学 基因组 遗传学 内科学 基因
作者
Xin Lai,Jinfei Zhou,Anja Wessely,Markus V. Heppt,Andreas Maier,Carola Berking,Julio Vera,Le Zhang
出处
期刊:International Journal of Cancer [Wiley]
卷期号:150 (6): 1029-1044 被引量:17
标识
DOI:10.1002/ijc.33860
摘要

Multiple types of genomic variations are present in cutaneous melanoma and some of the genomic features may have an impact on the prognosis of the disease. The access to genomics data via public repositories such as The Cancer Genome Atlas (TCGA) allows for a better understanding of melanoma at the molecular level, therefore making characterization of substantial heterogeneity in melanoma patients possible. Here, we proposed an approach that integrates genomics data, a disease network, and a deep learning model to classify melanoma patients for prognosis, assess the impact of genomic features on the classification and provide interpretation to the impactful features. We integrated genomics data into a melanoma network and applied an autoencoder model to identify subgroups in TCGA melanoma patients. The model utilizes communities identified in the network to effectively reduce the dimensionality of genomics data into a patient score profile. Based on the score profile, we identified three patient subtypes that show different survival times. Furthermore, we quantified and ranked the impact of genomic features on the patient score profile using a machine-learning technique. Follow-up analysis of the top-ranking features provided us with the biological interpretation of them at both pathway and molecular levels, such as their mutation and interactome profiles in melanoma and their involvement in pathways associated with signaling transduction, immune system and cell cycle. Taken together, we demonstrated the ability of the approach to identify disease subgroups using a deep learning model that captures the most relevant information of genomics data in the melanoma network.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
热心的乞完成签到,获得积分10
刚刚
刚刚
haha完成签到 ,获得积分10
刚刚
陈俊彰发布了新的文献求助10
1秒前
1秒前
1秒前
2秒前
情怀应助sxp1031采纳,获得10
2秒前
须眉交白完成签到,获得积分10
2秒前
归尘应助zygclwl采纳,获得10
2秒前
文献啊文献完成签到,获得积分10
2秒前
电闪发布了新的文献求助10
3秒前
大劲完成签到,获得积分10
3秒前
Nalitesgerl发布了新的文献求助10
3秒前
11发布了新的文献求助10
5秒前
别管我了应助饱满的盼芙采纳,获得10
6秒前
Eric发布了新的文献求助10
6秒前
7秒前
xiaotian发布了新的文献求助10
7秒前
Bronx完成签到,获得积分10
7秒前
小二郎应助xixilulixiu采纳,获得10
7秒前
亢kxh完成签到,获得积分10
8秒前
9秒前
9秒前
9秒前
所所应助Dr.Liujun采纳,获得10
12秒前
7777777完成签到,获得积分10
12秒前
DW完成签到,获得积分10
12秒前
大个应助勤奋发卡采纳,获得10
13秒前
陈俊彰完成签到,获得积分10
13秒前
14秒前
xiaotian完成签到,获得积分20
14秒前
我讨厌文献综述完成签到 ,获得积分10
15秒前
15秒前
Orange应助涵泽采纳,获得10
15秒前
blessed兰发布了新的文献求助10
16秒前
17秒前
18秒前
18秒前
18秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961223
求助须知:如何正确求助?哪些是违规求助? 3507496
关于积分的说明 11136509
捐赠科研通 3239958
什么是DOI,文献DOI怎么找? 1790571
邀请新用户注册赠送积分活动 872449
科研通“疑难数据库(出版商)”最低求助积分说明 803186