A disease network‐based deep learning approach for characterizing melanoma

基因组学 黑色素瘤 自编码 深度学习 疾病 计算生物学 计算机科学 人工智能 医学 机器学习 生物 生物信息学 基因组 遗传学 内科学 基因
作者
Xin Lai,Jinfei Zhou,Anja Wessely,Markus V. Heppt,Andreas Maier,Carola Berking,Julio Vera,Le Zhang
出处
期刊:International Journal of Cancer [Wiley]
卷期号:150 (6): 1029-1044 被引量:17
标识
DOI:10.1002/ijc.33860
摘要

Multiple types of genomic variations are present in cutaneous melanoma and some of the genomic features may have an impact on the prognosis of the disease. The access to genomics data via public repositories such as The Cancer Genome Atlas (TCGA) allows for a better understanding of melanoma at the molecular level, therefore making characterization of substantial heterogeneity in melanoma patients possible. Here, we proposed an approach that integrates genomics data, a disease network, and a deep learning model to classify melanoma patients for prognosis, assess the impact of genomic features on the classification and provide interpretation to the impactful features. We integrated genomics data into a melanoma network and applied an autoencoder model to identify subgroups in TCGA melanoma patients. The model utilizes communities identified in the network to effectively reduce the dimensionality of genomics data into a patient score profile. Based on the score profile, we identified three patient subtypes that show different survival times. Furthermore, we quantified and ranked the impact of genomic features on the patient score profile using a machine-learning technique. Follow-up analysis of the top-ranking features provided us with the biological interpretation of them at both pathway and molecular levels, such as their mutation and interactome profiles in melanoma and their involvement in pathways associated with signaling transduction, immune system and cell cycle. Taken together, we demonstrated the ability of the approach to identify disease subgroups using a deep learning model that captures the most relevant information of genomics data in the melanoma network.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天天快乐应助mphla采纳,获得10
刚刚
刚刚
暮沐晓光完成签到,获得积分10
1秒前
1秒前
1秒前
Yingling完成签到,获得积分10
2秒前
3秒前
4秒前
4秒前
何欢完成签到,获得积分10
5秒前
5秒前
梁双发布了新的文献求助30
5秒前
Sun应助Ludan采纳,获得10
5秒前
6秒前
JHcHuN发布了新的文献求助20
6秒前
6秒前
dxftx应助柔弱丝袜采纳,获得10
7秒前
11发布了新的文献求助10
7秒前
7秒前
Echo完成签到,获得积分10
8秒前
8秒前
科研通AI5应助小小采纳,获得20
8秒前
宁人发布了新的文献求助10
9秒前
哎呀完成签到,获得积分10
9秒前
Yana__Chan完成签到,获得积分10
9秒前
wang发布了新的文献求助30
9秒前
hao123发布了新的文献求助10
9秒前
淡淡的航空完成签到,获得积分10
10秒前
小红帽完成签到,获得积分10
10秒前
星野发布了新的文献求助10
10秒前
赘婿应助Ja采纳,获得10
11秒前
12秒前
mphla发布了新的文献求助10
12秒前
12秒前
话语发布了新的文献求助10
12秒前
snoopy完成签到,获得积分20
13秒前
14秒前
Ludan完成签到,获得积分10
14秒前
岁月间完成签到,获得积分10
15秒前
勤奋旭尧发布了新的文献求助10
15秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 3000
All the Birds of the World 3000
Weirder than Sci-fi: Speculative Practice in Art and Finance 960
Resilience of a Nation: A History of the Military in Rwanda 500
Essentials of Performance Analysis in Sport 500
Measure Mean Linear Intercept 500
Introduction to Comparative Public Administration: Administrative Systems and Reforms in Europe: Second Edition 2nd Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3726798
求助须知:如何正确求助?哪些是违规求助? 3271808
关于积分的说明 9973811
捐赠科研通 2987155
什么是DOI,文献DOI怎么找? 1638750
邀请新用户注册赠送积分活动 778259
科研通“疑难数据库(出版商)”最低求助积分说明 747549