A disease network‐based deep learning approach for characterizing melanoma

基因组学 黑色素瘤 自编码 深度学习 疾病 计算生物学 计算机科学 人工智能 医学 机器学习 生物 生物信息学 基因组 遗传学 内科学 基因
作者
Xin Lai,Jinfei Zhou,Anja Wessely,Markus V. Heppt,Andreas Maier,Carola Berking,Julio Vera,Le Zhang
出处
期刊:International Journal of Cancer [Wiley]
卷期号:150 (6): 1029-1044 被引量:17
标识
DOI:10.1002/ijc.33860
摘要

Multiple types of genomic variations are present in cutaneous melanoma and some of the genomic features may have an impact on the prognosis of the disease. The access to genomics data via public repositories such as The Cancer Genome Atlas (TCGA) allows for a better understanding of melanoma at the molecular level, therefore making characterization of substantial heterogeneity in melanoma patients possible. Here, we proposed an approach that integrates genomics data, a disease network, and a deep learning model to classify melanoma patients for prognosis, assess the impact of genomic features on the classification and provide interpretation to the impactful features. We integrated genomics data into a melanoma network and applied an autoencoder model to identify subgroups in TCGA melanoma patients. The model utilizes communities identified in the network to effectively reduce the dimensionality of genomics data into a patient score profile. Based on the score profile, we identified three patient subtypes that show different survival times. Furthermore, we quantified and ranked the impact of genomic features on the patient score profile using a machine-learning technique. Follow-up analysis of the top-ranking features provided us with the biological interpretation of them at both pathway and molecular levels, such as their mutation and interactome profiles in melanoma and their involvement in pathways associated with signaling transduction, immune system and cell cycle. Taken together, we demonstrated the ability of the approach to identify disease subgroups using a deep learning model that captures the most relevant information of genomics data in the melanoma network.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
刘47发布了新的文献求助10
1秒前
皮蛋solo粥完成签到,获得积分20
1秒前
称心的猫咪完成签到,获得积分10
2秒前
Owen应助Lorain采纳,获得10
2秒前
机灵语雪完成签到,获得积分10
2秒前
3秒前
jia完成签到,获得积分20
3秒前
Xu完成签到,获得积分20
4秒前
Lumos发布了新的文献求助10
4秒前
4秒前
4秒前
白开水发布了新的文献求助10
4秒前
wuyuzegang发布了新的文献求助10
4秒前
5秒前
小x完成签到,获得积分20
5秒前
烟花应助paulhsy采纳,获得10
5秒前
skycrygg521发布了新的文献求助10
5秒前
6640发布了新的文献求助10
6秒前
6秒前
BowieHuang应助kk采纳,获得10
6秒前
歪歪大王完成签到,获得积分10
7秒前
tiantian完成签到,获得积分10
8秒前
8秒前
8秒前
Chenyy完成签到,获得积分10
9秒前
9秒前
9秒前
殷昭慧发布了新的文献求助10
10秒前
科研通AI2S应助典雅的书蝶采纳,获得10
10秒前
稳重的秋天完成签到,获得积分10
10秒前
风往北吹完成签到,获得积分10
10秒前
NexusExplorer应助Lorain采纳,获得10
10秒前
隐形曼青应助含蓄觅山采纳,获得10
11秒前
灵巧幻嫣完成签到,获得积分10
11秒前
leey完成签到,获得积分10
11秒前
杨飞发布了新的文献求助10
11秒前
01发布了新的文献求助10
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5709862
求助须知:如何正确求助?哪些是违规求助? 5196870
关于积分的说明 15258745
捐赠科研通 4862555
什么是DOI,文献DOI怎么找? 2610161
邀请新用户注册赠送积分活动 1560499
关于科研通互助平台的介绍 1518208