已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A comprehensive texture feature analysis framework of renal cell carcinoma: pathological, prognostic, and genomic evaluation based on CT images

肾细胞癌 病态的 医学 分割 放射科 特征(语言学) 阶段(地层学) Sørensen–骰子系数 人工智能 病理 模式识别(心理学) 图像分割 计算机科学 生物 古生物学 哲学 语言学
作者
Kai Wu,Peng Wu,Kai Yang,Zhe Li,Sijia Kong,Lu Yu,Enpu Zhang,Hanlin Liu,Qing Guo,Song Wu
出处
期刊:European Radiology [Springer Nature]
卷期号:32 (4): 2255-2265 被引量:24
标识
DOI:10.1007/s00330-021-08353-3
摘要

We tried to realize accurate pathological classification, assessment of prognosis, and genomic molecular typing of renal cell carcinoma by CT texture feature analysis. To determine whether CT texture features can perform accurate pathological classification and evaluation of prognosis and genomic characteristics in renal cell carcinoma.Patients with renal cell carcinoma from five open-source cohorts were analyzed retrospectively in this study. These data were randomly split to train and test machine learning algorithms to segment the lesion, predict the histological subtype, tumor stage, and pathological grade. Dice coefficient and performance metrics such as accuracy and AUC were calculated to evaluate the segmentation and classification model. Quantitative decomposition of the predictive model was conducted to explore the contribution of each feature. Besides, survival analysis and the statistical correlation between CT texture features, pathological, and genomic signatures were investigated.A total of 569 enhanced CT images of 443 patients (mean age 59.4, 278 males) were included in the analysis. In the segmentation task, the mean dice coefficient was 0.96 for the kidney and 0.88 for the cancer region. For classification of histologic subtype, tumor stage, and pathological grade, the model was on a par with radiologists and the AUC was 0.83 [Formula: see text] 0.1, 0.80 [Formula: see text] 0.1, and 0.77 [Formula: see text] 0.1 at 95% confidence intervals, respectively. Moreover, specific quantitative CT features related to clinical prognosis were identified. A strong statistical correlation (R2 = 0.83) between the feature crosses and genomic characteristics was shown. The structural equation modeling confirmed significant associations between CT features, pathological (β = - 0.75), and molecular subtype (β = - 0.30).The framework illustrates high performance in the pathological classification of renal cell carcinoma. Prognosis and genomic characteristics can be inferred by quantitative image analysis.• The analytical framework exhibits high-performance pathological classification of renal cell carcinoma and is on a par with human radiologists. • Quantitative decomposition of the predictive model shows that specific texture features contribute to histologic subtype and tumor stage classification. • Structural equation modeling shows the associations of genomic characteristics to CT texture features. Overall survival and molecular characteristics can be inferred by quantitative CT texture analysis in renal cell carcinoma.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
感动手链完成签到,获得积分10
1秒前
555完成签到,获得积分10
3秒前
Fxy完成签到 ,获得积分10
4秒前
挚智完成签到 ,获得积分10
6秒前
7秒前
haohaohao完成签到,获得积分10
7秒前
sunyt完成签到,获得积分10
8秒前
情怀应助Yi采纳,获得10
8秒前
浮游应助远方采纳,获得10
10秒前
不可以哦完成签到 ,获得积分10
10秒前
11秒前
rick3455完成签到 ,获得积分10
12秒前
开放的亦竹完成签到,获得积分10
12秒前
执念完成签到 ,获得积分10
13秒前
14秒前
耶耶完成签到,获得积分20
15秒前
Doctor完成签到 ,获得积分10
15秒前
拼搏的寒凝完成签到 ,获得积分10
16秒前
大学生完成签到 ,获得积分10
16秒前
林林发布了新的文献求助10
17秒前
Only1完成签到,获得积分10
18秒前
轻松笙完成签到,获得积分10
19秒前
小张同学完成签到 ,获得积分10
22秒前
DChen完成签到 ,获得积分10
23秒前
嘟嘟雯完成签到 ,获得积分10
24秒前
24秒前
情怀应助琬碗采纳,获得30
25秒前
Liangyong_Fu完成签到 ,获得积分10
25秒前
26秒前
Only1发布了新的文献求助10
26秒前
昵称完成签到,获得积分10
26秒前
26秒前
土豆你个西红柿完成签到 ,获得积分10
27秒前
小丸子完成签到,获得积分10
28秒前
Dlan完成签到,获得积分10
28秒前
Aliya完成签到 ,获得积分10
28秒前
dadabad完成签到 ,获得积分10
29秒前
xixiYa_发布了新的文献求助10
30秒前
小蘑菇应助小肥采纳,获得10
30秒前
jjj完成签到 ,获得积分10
31秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Holistic Discourse Analysis 600
Constitutional and Administrative Law 600
Vertebrate Palaeontology, 5th Edition 530
Fiction e non fiction: storia, teorie e forme 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5345304
求助须知:如何正确求助?哪些是违规求助? 4480383
关于积分的说明 13945939
捐赠科研通 4377758
什么是DOI,文献DOI怎么找? 2405455
邀请新用户注册赠送积分活动 1398029
关于科研通互助平台的介绍 1370386