A comprehensive texture feature analysis framework of renal cell carcinoma: pathological, prognostic, and genomic evaluation based on CT images

肾细胞癌 病态的 医学 分割 放射科 特征(语言学) 阶段(地层学) Sørensen–骰子系数 人工智能 病理 模式识别(心理学) 图像分割 计算机科学 生物 古生物学 哲学 语言学
作者
Kai Wu,Peng Wu,Kai Yang,Zhe Li,Sijia Kong,Lu Yu,Enpu Zhang,Hanlin Liu,Qing Guo,Song Wu
出处
期刊:European Radiology [Springer Nature]
卷期号:32 (4): 2255-2265 被引量:24
标识
DOI:10.1007/s00330-021-08353-3
摘要

We tried to realize accurate pathological classification, assessment of prognosis, and genomic molecular typing of renal cell carcinoma by CT texture feature analysis. To determine whether CT texture features can perform accurate pathological classification and evaluation of prognosis and genomic characteristics in renal cell carcinoma.Patients with renal cell carcinoma from five open-source cohorts were analyzed retrospectively in this study. These data were randomly split to train and test machine learning algorithms to segment the lesion, predict the histological subtype, tumor stage, and pathological grade. Dice coefficient and performance metrics such as accuracy and AUC were calculated to evaluate the segmentation and classification model. Quantitative decomposition of the predictive model was conducted to explore the contribution of each feature. Besides, survival analysis and the statistical correlation between CT texture features, pathological, and genomic signatures were investigated.A total of 569 enhanced CT images of 443 patients (mean age 59.4, 278 males) were included in the analysis. In the segmentation task, the mean dice coefficient was 0.96 for the kidney and 0.88 for the cancer region. For classification of histologic subtype, tumor stage, and pathological grade, the model was on a par with radiologists and the AUC was 0.83 [Formula: see text] 0.1, 0.80 [Formula: see text] 0.1, and 0.77 [Formula: see text] 0.1 at 95% confidence intervals, respectively. Moreover, specific quantitative CT features related to clinical prognosis were identified. A strong statistical correlation (R2 = 0.83) between the feature crosses and genomic characteristics was shown. The structural equation modeling confirmed significant associations between CT features, pathological (β = - 0.75), and molecular subtype (β = - 0.30).The framework illustrates high performance in the pathological classification of renal cell carcinoma. Prognosis and genomic characteristics can be inferred by quantitative image analysis.• The analytical framework exhibits high-performance pathological classification of renal cell carcinoma and is on a par with human radiologists. • Quantitative decomposition of the predictive model shows that specific texture features contribute to histologic subtype and tumor stage classification. • Structural equation modeling shows the associations of genomic characteristics to CT texture features. Overall survival and molecular characteristics can be inferred by quantitative CT texture analysis in renal cell carcinoma.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
lunlun发布了新的文献求助30
1秒前
leinuo077完成签到,获得积分10
1秒前
清脆映真完成签到,获得积分10
1秒前
biu完成签到,获得积分10
2秒前
风乘万里发布了新的文献求助50
2秒前
蓝茶完成签到,获得积分10
2秒前
Dotson完成签到,获得积分10
2秒前
小梁发布了新的文献求助10
3秒前
YC完成签到,获得积分10
3秒前
hyper3than完成签到,获得积分10
3秒前
3秒前
科研通AI6应助李小莉0419采纳,获得10
3秒前
4秒前
4秒前
思想家发布了新的文献求助10
4秒前
rh发布了新的文献求助10
4秒前
江川完成签到,获得积分10
5秒前
田様应助灵灵妖采纳,获得10
5秒前
6秒前
邢大志完成签到,获得积分20
6秒前
想要发文章完成签到,获得积分10
6秒前
Lchemistry完成签到,获得积分10
7秒前
7秒前
唯博完成签到 ,获得积分10
8秒前
李爱国应助luraaaa采纳,获得10
8秒前
xrt完成签到,获得积分10
8秒前
蓝茶发布了新的文献求助20
8秒前
9秒前
9秒前
凶狠的翅膀完成签到,获得积分10
9秒前
holland完成签到 ,获得积分10
9秒前
研友_VZG7GZ应助孙浩洋采纳,获得10
9秒前
yr888完成签到,获得积分10
9秒前
邢大志发布了新的文献求助10
10秒前
10秒前
量子星尘发布了新的文献求助10
10秒前
10秒前
huijuan完成签到,获得积分10
11秒前
钟冬燕完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608407
求助须知:如何正确求助?哪些是违规求助? 4693040
关于积分的说明 14876313
捐赠科研通 4717445
什么是DOI,文献DOI怎么找? 2544206
邀请新用户注册赠送积分活动 1509230
关于科研通互助平台的介绍 1472836