A comprehensive texture feature analysis framework of renal cell carcinoma: pathological, prognostic, and genomic evaluation based on CT images

肾细胞癌 病态的 医学 分割 放射科 特征(语言学) 阶段(地层学) Sørensen–骰子系数 人工智能 病理 模式识别(心理学) 图像分割 计算机科学 生物 古生物学 哲学 语言学
作者
Kai Wu,Peng Wu,Kai Yang,Zhe Li,Sijia Kong,Lu Yu,Enpu Zhang,Hanlin Liu,Qing Guo,Song Wu
出处
期刊:European Radiology [Springer Nature]
卷期号:32 (4): 2255-2265 被引量:24
标识
DOI:10.1007/s00330-021-08353-3
摘要

We tried to realize accurate pathological classification, assessment of prognosis, and genomic molecular typing of renal cell carcinoma by CT texture feature analysis. To determine whether CT texture features can perform accurate pathological classification and evaluation of prognosis and genomic characteristics in renal cell carcinoma.Patients with renal cell carcinoma from five open-source cohorts were analyzed retrospectively in this study. These data were randomly split to train and test machine learning algorithms to segment the lesion, predict the histological subtype, tumor stage, and pathological grade. Dice coefficient and performance metrics such as accuracy and AUC were calculated to evaluate the segmentation and classification model. Quantitative decomposition of the predictive model was conducted to explore the contribution of each feature. Besides, survival analysis and the statistical correlation between CT texture features, pathological, and genomic signatures were investigated.A total of 569 enhanced CT images of 443 patients (mean age 59.4, 278 males) were included in the analysis. In the segmentation task, the mean dice coefficient was 0.96 for the kidney and 0.88 for the cancer region. For classification of histologic subtype, tumor stage, and pathological grade, the model was on a par with radiologists and the AUC was 0.83 [Formula: see text] 0.1, 0.80 [Formula: see text] 0.1, and 0.77 [Formula: see text] 0.1 at 95% confidence intervals, respectively. Moreover, specific quantitative CT features related to clinical prognosis were identified. A strong statistical correlation (R2 = 0.83) between the feature crosses and genomic characteristics was shown. The structural equation modeling confirmed significant associations between CT features, pathological (β = - 0.75), and molecular subtype (β = - 0.30).The framework illustrates high performance in the pathological classification of renal cell carcinoma. Prognosis and genomic characteristics can be inferred by quantitative image analysis.• The analytical framework exhibits high-performance pathological classification of renal cell carcinoma and is on a par with human radiologists. • Quantitative decomposition of the predictive model shows that specific texture features contribute to histologic subtype and tumor stage classification. • Structural equation modeling shows the associations of genomic characteristics to CT texture features. Overall survival and molecular characteristics can be inferred by quantitative CT texture analysis in renal cell carcinoma.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
深情的冬灵完成签到,获得积分20
2秒前
3秒前
Scout完成签到,获得积分10
3秒前
li完成签到,获得积分20
4秒前
lia完成签到 ,获得积分10
5秒前
小二郎应助迷人绮彤采纳,获得10
6秒前
呼吸小研狗完成签到,获得积分20
6秒前
ding应助yy采纳,获得10
7秒前
7秒前
充电宝应助苏11采纳,获得10
9秒前
直率铃铛发布了新的文献求助10
9秒前
10秒前
量子星尘发布了新的文献求助10
11秒前
11秒前
脑洞疼应助明理觅风采纳,获得10
12秒前
13秒前
乐乐应助热心的雁桃采纳,获得10
14秒前
青天白日完成签到,获得积分10
14秒前
ding应助Wonder罗采纳,获得10
14秒前
打打应助Mia采纳,获得10
15秒前
yan完成签到,获得积分10
15秒前
15秒前
17秒前
韩麒嘉完成签到 ,获得积分10
17秒前
迷人绮彤发布了新的文献求助10
17秒前
南城忆潇湘完成签到,获得积分10
17秒前
Shmily完成签到,获得积分10
18秒前
shlw完成签到,获得积分10
18秒前
20秒前
20秒前
suyihui应助自由可兰采纳,获得20
21秒前
Mr兔仙森完成签到,获得积分10
21秒前
都能看出你打开完成签到,获得积分10
22秒前
22秒前
23秒前
淡淡的山芙完成签到 ,获得积分10
24秒前
24秒前
hongjing发布了新的文献求助10
25秒前
CipherSage应助沉静的白猫采纳,获得10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5778513
求助须知:如何正确求助?哪些是违规求助? 5641999
关于积分的说明 15449665
捐赠科研通 4910179
什么是DOI,文献DOI怎么找? 2642469
邀请新用户注册赠送积分活动 1590270
关于科研通互助平台的介绍 1544599