Development of prediction models for the incidence of pediatric acute otitis media using Poisson regression analysis and XGBoost

泊松回归 医学 空气污染 回归分析 急性中耳炎 入射(几何) 中耳炎 人口 环境卫生 统计
作者
Seog Kyun Mun,Mun Young Chang
出处
期刊:Environmental Science and Pollution Research [Springer Nature]
标识
DOI:10.1007/s11356-021-17135-9
摘要

Otitis media has profound health and economic impact, and its occurrence is known to be influenced by air pollution and climate. The purpose of this study was to develop prediction models using climate and air pollution indicators for the occurrence of acute otitis media (AOM). The study was conducted from January 1, 2014, to December 31, 2019, and included pediatric patients (age < 12 years) diagnosed on their emergency room visit in our tertiary medical institution. We obtained data on the weekly number of AOM patients and the weekly average values of air pollution and climate indicators. Poisson regression analysis and eXtreme Gradient Boosting (XGBoost) were used to develop prediction models for the overall pediatric patients and for the patients classified according to sex (male and female) and age (< 2 years and ≥ 2 years). For the overall population, the correlation coefficients between the original and estimated data in the testing set were 0.441 (p < 0.001) and 0.844 (p < 0.001) for the models developed using Poisson regression analysis and XGBoost, respectively. The root-mean-square errors in the testing set were 3.094 and 1.856, respectively. For patients classified according to sex and age, the prediction models developed using XGBoost showed better performance than the models developed using Poisson regression analysis. In conclusion, this study successfully developed prediction models with air pollution and climate indicators for the incidence of pediatric AOM, using XGBoost. This model can be further developed to prevent pediatric AOM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
科研通AI2S应助枯木采纳,获得10
1秒前
1秒前
3秒前
英姑应助whn采纳,获得10
3秒前
3秒前
宗友绿发布了新的文献求助10
4秒前
zxxxx发布了新的文献求助10
4秒前
4秒前
英姑应助颜沛文采纳,获得10
10秒前
桑葚啊发布了新的文献求助10
10秒前
10秒前
长心发布了新的文献求助10
12秒前
科研通AI2S应助小元采纳,获得10
12秒前
爱听歌凤灵完成签到,获得积分10
12秒前
13秒前
14秒前
14秒前
14秒前
14秒前
小龙完成签到,获得积分10
15秒前
15秒前
16秒前
16秒前
NexusExplorer应助桑葚啊采纳,获得10
16秒前
chocolate发布了新的文献求助10
17秒前
糊涂的衫完成签到,获得积分10
17秒前
牟白容发布了新的文献求助10
18秒前
伶伶完成签到,获得积分10
18秒前
景自端发布了新的文献求助10
20秒前
颜沛文发布了新的文献求助10
21秒前
搜集达人应助zhengmin采纳,获得10
21秒前
传奇3应助SBGLP采纳,获得10
21秒前
搜集达人应助冯兴龙采纳,获得10
21秒前
在水一方应助张晓洁采纳,获得10
22秒前
22秒前
牟白容完成签到,获得积分10
24秒前
sinohan完成签到,获得积分10
25秒前
良辰完成签到,获得积分10
27秒前
28秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3146304
求助须知:如何正确求助?哪些是违规求助? 2797763
关于积分的说明 7825201
捐赠科研通 2454079
什么是DOI,文献DOI怎么找? 1306010
科研通“疑难数据库(出版商)”最低求助积分说明 627638
版权声明 601503