Development of prediction models for the incidence of pediatric acute otitis media using Poisson regression analysis and XGBoost

泊松回归 医学 空气污染 回归分析 急性中耳炎 入射(几何) 中耳炎 人口 环境卫生 统计
作者
Seog Kyun Mun,Mun Young Chang
出处
期刊:Environmental Science and Pollution Research [Springer Nature]
标识
DOI:10.1007/s11356-021-17135-9
摘要

Otitis media has profound health and economic impact, and its occurrence is known to be influenced by air pollution and climate. The purpose of this study was to develop prediction models using climate and air pollution indicators for the occurrence of acute otitis media (AOM). The study was conducted from January 1, 2014, to December 31, 2019, and included pediatric patients (age < 12 years) diagnosed on their emergency room visit in our tertiary medical institution. We obtained data on the weekly number of AOM patients and the weekly average values of air pollution and climate indicators. Poisson regression analysis and eXtreme Gradient Boosting (XGBoost) were used to develop prediction models for the overall pediatric patients and for the patients classified according to sex (male and female) and age (< 2 years and ≥ 2 years). For the overall population, the correlation coefficients between the original and estimated data in the testing set were 0.441 (p < 0.001) and 0.844 (p < 0.001) for the models developed using Poisson regression analysis and XGBoost, respectively. The root-mean-square errors in the testing set were 3.094 and 1.856, respectively. For patients classified according to sex and age, the prediction models developed using XGBoost showed better performance than the models developed using Poisson regression analysis. In conclusion, this study successfully developed prediction models with air pollution and climate indicators for the incidence of pediatric AOM, using XGBoost. This model can be further developed to prevent pediatric AOM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wanci应助hhh采纳,获得30
刚刚
刚刚
ATAYA发布了新的文献求助10
刚刚
zhenzhen发布了新的文献求助10
1秒前
娜行发布了新的文献求助10
1秒前
科研通AI5应助么系么系采纳,获得10
2秒前
斯文败类应助坚果采纳,获得10
2秒前
qingkong完成签到 ,获得积分10
2秒前
3秒前
3秒前
3秒前
4秒前
yxq完成签到 ,获得积分10
5秒前
franklvlei完成签到,获得积分10
5秒前
共享精神应助yitang采纳,获得10
5秒前
猪猪hero发布了新的文献求助10
5秒前
科研通AI5应助咕噜仔采纳,获得10
5秒前
6秒前
tRNA完成签到,获得积分10
6秒前
WNL发布了新的文献求助10
7秒前
平淡南霜发布了新的文献求助10
7秒前
7秒前
共享精神应助我爱读文献采纳,获得10
7秒前
英俊的铭应助感动的世平采纳,获得10
8秒前
8秒前
柒八染发布了新的文献求助10
8秒前
8秒前
zewangguo完成签到,获得积分20
8秒前
lx完成签到,获得积分20
9秒前
Ssyong完成签到 ,获得积分10
9秒前
9秒前
luohan完成签到,获得积分10
9秒前
诚心的大碗完成签到,获得积分10
9秒前
晾猫人完成签到,获得积分10
9秒前
9秒前
花开hhhhhhh完成签到,获得积分10
9秒前
欢欢完成签到,获得积分10
10秒前
Joshua发布了新的文献求助10
10秒前
可爱的函函应助Tira采纳,获得10
10秒前
lqq的一家之主完成签到,获得积分10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678