已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Health Behavior Trajectories in High Cardiovascular Risk Populations

医学 逻辑回归 潜在类模型 方差分析 物理疗法 体力活动 心血管健康 人口学 心理干预 老年学 内科学 疾病 统计 精神科 数学 社会学
作者
Chi‐Young Lee,Qing Yang,Ruth Q. Wolever,Allison Vorderstrasse
出处
期刊:Journal of Cardiovascular Nursing [Ovid Technologies (Wolters Kluwer)]
卷期号:36 (6): E80-E90 被引量:2
标识
DOI:10.1097/jcn.0000000000000850
摘要

Background The application of latent class growth analysis (LCGA) has been limited in behavioral studies on high–cardiovascular-risk populations. Aim The current study aimed to identify distinct health behavior trajectories in high–cardiovascular-risk populations using LCGA. We also examined the baseline individual characteristics associated with different health behavior trajectories and determined which trajectory is associated with improved cardiovascular risk outcomes at 52 weeks. Methods This secondary analysis of a clinical trial included 200 patients admitted to primary care clinics. Latent class growth analysis was conducted to identify the trajectories of physical activity and dietary intake; these were measured at 4 different time points during a 52-week study period. Analysis of variance/χ 2 test was used to assess the associations between baseline individual characteristics and trajectories, and logistic regression analysis was used to identify associations between trajectories and cardiovascular risk outcomes at 52 weeks. Results Three trajectories were identified for physical activity (low-, moderate-, and high-stable). Risk perception, patient activation, and depressive symptoms predicted the trajectories. High-stable trajectory for physical activity was associated with better cardiovascular risk outcomes at the 52-week follow-up. Two trajectories (low-stable and high-decreasing) were identified for percent energy from fat, but the factors that can predict trajectories were limited. Conclusions Interventions are needed to target patients who begin with a lower physical activity level, with the goal of enhanced cardiovascular health. The predictors identified in the study may facilitate earlier and more tailored interventions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王俊杰发布了新的文献求助20
刚刚
刘振宇关注了科研通微信公众号
刚刚
ax完成签到,获得积分10
刚刚
1秒前
唉唉唉发布了新的文献求助10
1秒前
1秒前
new完成签到,获得积分10
1秒前
汉堡包应助余红采纳,获得10
2秒前
leezz完成签到,获得积分10
2秒前
科研通AI6应助Wangyingjie5采纳,获得10
3秒前
4秒前
在水一方应助longlong采纳,获得10
5秒前
ax发布了新的文献求助10
6秒前
九九完成签到,获得积分10
7秒前
8秒前
影1发布了新的文献求助10
8秒前
小二郎应助Zyc采纳,获得10
9秒前
汤317完成签到,获得积分10
9秒前
9秒前
瀛瀛完成签到 ,获得积分0
10秒前
10秒前
吉里巴发布了新的文献求助10
11秒前
igigi发布了新的文献求助10
11秒前
Hale完成签到,获得积分0
11秒前
11秒前
九九发布了新的文献求助10
12秒前
轻松面包完成签到,获得积分10
13秒前
暗中讨饭完成签到,获得积分10
15秒前
Da You发布了新的文献求助10
15秒前
17秒前
longlong完成签到,获得积分20
19秒前
19秒前
Zyc发布了新的文献求助10
22秒前
QQQ发布了新的文献求助10
22秒前
23秒前
网络复杂发布了新的文献求助10
24秒前
大模型应助专注乐荷采纳,获得10
25秒前
25秒前
思源应助友好的鱼鱼采纳,获得10
26秒前
开心凌柏完成签到,获得积分10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5663851
求助须知:如何正确求助?哪些是违规求助? 4853565
关于积分的说明 15106071
捐赠科研通 4822104
什么是DOI,文献DOI怎么找? 2581216
邀请新用户注册赠送积分活动 1535412
关于科研通互助平台的介绍 1493740