SMDI: An Index for Measuring Subgingival Microbial Dysbiosis.

失调 医学 微生物学
作者
Tsute Chen,Philip Marsh,Nezar Noor Al-hebshi
出处
期刊:Journal of Dental Research [SAGE]
卷期号:: 220345211035775- 被引量:1
标识
DOI:10.1177/00220345211035775
摘要

An intuitive, clinically relevant index of microbial dysbiosis as a summary statistic of subgingival microbiome profiles is needed. Here, we describe a subgingival microbial dysbiosis index (SMDI) based on machine learning analysis of published periodontitis/health 16S microbiome data. The raw sequencing data, split into training and test sets, were quality filtered, taxonomically assigned to the species level, and centered log-ratio transformed. The training data set was subject to random forest analysis to identify discriminating species (DS) between periodontitis and health. DS lists, compiled by various Gini importance score cutoffs, were used to compute the SMDI for samples in the training and test data sets as the mean centered log-ratio abundance of periodontitis-associated species subtracted by that of health-associated ones. Diagnostic accuracy was assessed with receiver operating characteristic analysis. An SMDI based on 49 DS provided the highest accuracy with areas under the curve of 0.96 and 0.92 in the training and test data sets, respectively, and ranged from -6 (most normobiotic) to 5 (most dysbiotic) with a value around zero discriminating most of the periodontitis and healthy samples. The top periodontitis-associated DS were Treponema denticola, Mogibacterium timidum, Fretibacterium spp., and Tannerella forsythia, while Actinomyces naeslundii and Streptococcus sanguinis were the top health-associated DS. The index was highly reproducible by hypervariable region. Applying the index to additional test data sets in which nitrate had been used to modulate the microbiome demonstrated that nitrate has dysbiosis-lowering properties in vitro and in vivo. Finally, 3 genera (Treponema, Fretibacterium, and Actinomyces) were identified that could be used for calculation of a simplified SMDI with comparable accuracy. In conclusion, we have developed a nonbiased, reproducible, and easy-to-interpret index that can be used to identify patients/sites at risk of periodontitis, to assess the microbial response to treatment, and, importantly, as a quantitative tool in microbiome modulation studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
vfuisNBIO12关注了科研通微信公众号
刚刚
太阳想玉米完成签到 ,获得积分10
2秒前
斯文败类应助刘耳朵采纳,获得20
2秒前
蒋海完成签到 ,获得积分10
3秒前
开朗的汉堡完成签到,获得积分10
5秒前
5秒前
lemonlmm举报科研狂魔求助涉嫌违规
6秒前
高挑的哈密瓜完成签到,获得积分10
8秒前
社恐Forza应助蛋壳柯采纳,获得10
8秒前
dungaway发布了新的文献求助10
9秒前
呆呆小猪完成签到,获得积分10
10秒前
有有完成签到 ,获得积分10
11秒前
尧九完成签到,获得积分10
12秒前
13秒前
chen完成签到,获得积分10
15秒前
fanfan完成签到,获得积分10
17秒前
18秒前
18秒前
能量球完成签到,获得积分10
19秒前
loong完成签到,获得积分10
22秒前
LIM发布了新的文献求助10
23秒前
科研小白完成签到,获得积分10
24秒前
satchzhao完成签到,获得积分10
27秒前
Jnest完成签到 ,获得积分10
28秒前
jiahao完成签到,获得积分10
29秒前
Yxy完成签到 ,获得积分10
30秒前
30秒前
优美的风完成签到,获得积分10
31秒前
李雪松完成签到 ,获得积分10
35秒前
jiahao发布了新的文献求助10
35秒前
舒服的鱼完成签到 ,获得积分10
36秒前
火花完成签到 ,获得积分10
38秒前
不吃了完成签到 ,获得积分10
39秒前
豆浆来点蒜泥完成签到,获得积分10
41秒前
ptjam完成签到,获得积分10
42秒前
seven完成签到,获得积分10
44秒前
DJ完成签到,获得积分10
45秒前
MHCL完成签到 ,获得积分10
45秒前
46秒前
隐形冷雁应助一招将死你采纳,获得10
46秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137115
求助须知:如何正确求助?哪些是违规求助? 2788096
关于积分的说明 7784635
捐赠科研通 2444121
什么是DOI,文献DOI怎么找? 1299763
科研通“疑难数据库(出版商)”最低求助积分说明 625574
版权声明 601011