无线电技术
卷积神经网络
磁共振成像
人工智能
深度学习
人工神经网络
子宫内膜癌
计算机科学
机器学习
预测建模
医学
癌症
放射科
内科学
作者
Yan Zhang,Cuilan Gong,Ling Zheng,Xiaoyan Li,Xiaomei Yang
摘要
The aim of the study was to investigate the intelligent recognition of radiomics based on the convolutional neural network (CNN) in predicting endometrial cancer (EC). In this study, 158 patients with EC in hospital were selected as the research objects and divided into a training group and a test group. All the patients underwent magnetic resonance imaging (MRI) before surgery. Based on the CNN, the imaging model of EC prediction was constructed according to the characteristics. Besides, the comprehensive prediction model was established through the clinical information and imaging parameters. The results showed that the area under the working characteristic curve (AUC) of the radiomics model and comprehensive prediction model was 0.897 and 0.913 in the training group, respectively. In addition, the AUC of the radiomics model was 0.889 in the test group and that of the comprehensive prediction model was 0.897. The comprehensive prediction model was established through specific imaging parameters and clinical pathological information, and its prediction performance was good, indicating that radiomics parameters could be applied as noninvasive markers to predict EC.
科研通智能强力驱动
Strongly Powered by AbleSci AI