已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

DeepBackground: Metamorphic testing for Deep-Learning-driven image recognition systems accompanied by Background-Relevance

人工智能 相关性(法律) 计算机科学 变质岩 模式识别(心理学) 深度学习 地质学 古生物学 政治学 法学
作者
Zhiyi Zhang,Pu Wang,Hongjing Guo,Ziyuan Wang,Yuqian Zhou,Zhiqiu Huang
出处
期刊:Information & Software Technology [Elsevier]
卷期号:140: 106701-106701 被引量:27
标识
DOI:10.1016/j.infsof.2021.106701
摘要

Recently, advances in Deep Learning (DL) have promoted the development of DL-driven image recognition systems in various fields, such as medical treatment, face detection, etc., almost achieving the same level of performance as the human brain. Nevertheless, using DL-driven image recognition systems in these safety-critical domains requires ensuring the accuracy and the stability of these systems. Recent research in this direction mainly focuses on using the image transformations for the overall image to detect the inconsistency of image recognition systems. However, the influence of the image background region ( i . e . , the region of the image other than the target object) on the recognition result of the systems and the robustness evaluation of the systems are not considered. To evaluate the robustness of DL-driven image recognition systems about image background region changes, this paper introduces DeepBackground, a novel metamorphic testing method for DL-driven image recognition systems. First, we define a new metric, termed Background-Relevance (BRC) to assess the influence degree of the image background region on the recognition result of the image recognition systems. DeepBackground defines a series of domain-specific metamorphic relations (MRs) combined with BRC and automatically generates many follow-up test images based on these MRs. Finally, DeepBackground detects the inconsistency of these systems and evaluates their robustness about image background changes according to BRC. Our empirical validation on 3 commercial image recognition services and 6 popular convolutional neural networks (CNNs) models shows that DeepBackground can not only evaluate the robustness of these image recognition systems about image background changes according to BRC, but also can detect their inconsistent behaviors. DeepBackground is capable of automatically generating high-quality test input images to detect the inconsistency of the image recognition systems, and evaluating the robustness of these systems about image background changes according to BRC. • This paper proposes a novel metamorphic testing method for Deep-Learning-driven image recognition systems (DeepBackground). • The approach introduces and formulates a new metric: Background-Relevance (BRC), which can assess the robustness of image recognition systems about background changes. • It also can detect the inconsistency of the image recognition systems. • An empirical study on several image recognition systems shows the feasibility and effectiveness of the approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李海完成签到,获得积分10
1秒前
1秒前
神勇元瑶完成签到,获得积分20
11秒前
12秒前
13秒前
踏实的老四完成签到,获得积分10
13秒前
14秒前
14秒前
pluto应助堃堃boom采纳,获得10
15秒前
nono发布了新的文献求助10
16秒前
王金农发布了新的文献求助10
19秒前
11发布了新的文献求助10
20秒前
陈年人少熬夜完成签到 ,获得积分10
21秒前
23秒前
26秒前
吕佩完成签到,获得积分10
26秒前
hhh完成签到 ,获得积分10
27秒前
甜甜若冰发布了新的文献求助10
29秒前
39秒前
41秒前
科研通AI2S应助47gongjiang采纳,获得10
42秒前
卷卷233611发布了新的文献求助10
44秒前
49秒前
哑巴和喇叭完成签到 ,获得积分10
53秒前
53秒前
54秒前
1234发布了新的文献求助10
54秒前
56秒前
AireenBeryl531应助yooga采纳,获得30
58秒前
头号玩家完成签到,获得积分10
59秒前
NF404发布了新的文献求助10
1分钟前
whitesheep完成签到,获得积分10
1分钟前
Swater完成签到 ,获得积分10
1分钟前
1分钟前
焱阳完成签到 ,获得积分10
1分钟前
1分钟前
焱阳关注了科研通微信公众号
1分钟前
搞怪莫茗发布了新的文献求助10
1分钟前
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5431945
求助须知:如何正确求助?哪些是违规求助? 4544768
关于积分的说明 14193772
捐赠科研通 4463994
什么是DOI,文献DOI怎么找? 2446920
邀请新用户注册赠送积分活动 1438241
关于科研通互助平台的介绍 1415027