DeepBackground: Metamorphic testing for Deep-Learning-driven image recognition systems accompanied by Background-Relevance

人工智能 相关性(法律) 计算机科学 变质岩 模式识别(心理学) 深度学习 地质学 古生物学 政治学 法学
作者
Zhiyi Zhang,Pu Wang,Hongjing Guo,Ziyuan Wang,Yuqian Zhou,Zhiqiu Huang
出处
期刊:Information & Software Technology [Elsevier BV]
卷期号:140: 106701-106701 被引量:27
标识
DOI:10.1016/j.infsof.2021.106701
摘要

Recently, advances in Deep Learning (DL) have promoted the development of DL-driven image recognition systems in various fields, such as medical treatment, face detection, etc., almost achieving the same level of performance as the human brain. Nevertheless, using DL-driven image recognition systems in these safety-critical domains requires ensuring the accuracy and the stability of these systems. Recent research in this direction mainly focuses on using the image transformations for the overall image to detect the inconsistency of image recognition systems. However, the influence of the image background region ( i . e . , the region of the image other than the target object) on the recognition result of the systems and the robustness evaluation of the systems are not considered. To evaluate the robustness of DL-driven image recognition systems about image background region changes, this paper introduces DeepBackground, a novel metamorphic testing method for DL-driven image recognition systems. First, we define a new metric, termed Background-Relevance (BRC) to assess the influence degree of the image background region on the recognition result of the image recognition systems. DeepBackground defines a series of domain-specific metamorphic relations (MRs) combined with BRC and automatically generates many follow-up test images based on these MRs. Finally, DeepBackground detects the inconsistency of these systems and evaluates their robustness about image background changes according to BRC. Our empirical validation on 3 commercial image recognition services and 6 popular convolutional neural networks (CNNs) models shows that DeepBackground can not only evaluate the robustness of these image recognition systems about image background changes according to BRC, but also can detect their inconsistent behaviors. DeepBackground is capable of automatically generating high-quality test input images to detect the inconsistency of the image recognition systems, and evaluating the robustness of these systems about image background changes according to BRC. • This paper proposes a novel metamorphic testing method for Deep-Learning-driven image recognition systems (DeepBackground). • The approach introduces and formulates a new metric: Background-Relevance (BRC), which can assess the robustness of image recognition systems about background changes. • It also can detect the inconsistency of the image recognition systems. • An empirical study on several image recognition systems shows the feasibility and effectiveness of the approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
烟花应助西子阳采纳,获得10
刚刚
蓝桉发布了新的文献求助10
刚刚
正直的以冬完成签到,获得积分10
1秒前
汉堡包应助ALL采纳,获得10
1秒前
5114发布了新的文献求助20
3秒前
3秒前
魔幻海豚发布了新的文献求助10
4秒前
张雯思发布了新的文献求助10
4秒前
一夜秋风花尽落完成签到,获得积分10
4秒前
4秒前
喜悦咖啡完成签到 ,获得积分10
5秒前
szh完成签到,获得积分10
7秒前
7秒前
8秒前
斯文败类应助一见喜采纳,获得10
9秒前
9秒前
10秒前
所所应助yellow采纳,获得10
10秒前
zzzzzy发布了新的文献求助10
10秒前
szh发布了新的文献求助10
10秒前
11秒前
丘比特应助zhengzh采纳,获得10
11秒前
科研通AI5应助123456789采纳,获得10
12秒前
12秒前
12秒前
林歌ovo发布了新的文献求助10
12秒前
TTTT完成签到,获得积分20
12秒前
123完成签到,获得积分10
13秒前
doggywong发布了新的文献求助10
13秒前
BoBo应助大气的妙旋采纳,获得20
13秒前
大雄12138完成签到,获得积分10
13秒前
5114发布了新的文献求助10
14秒前
14秒前
包容的小松鼠完成签到 ,获得积分10
15秒前
15秒前
wujiao发布了新的文献求助10
15秒前
TTTT发布了新的文献求助10
15秒前
可靠招牌发布了新的文献求助10
16秒前
Lsy完成签到,获得积分10
16秒前
16秒前
高分求助中
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4547686
求助须知:如何正确求助?哪些是违规求助? 3978585
关于积分的说明 12319234
捐赠科研通 3647114
什么是DOI,文献DOI怎么找? 2008560
邀请新用户注册赠送积分活动 1044062
科研通“疑难数据库(出版商)”最低求助积分说明 932684