DeepBackground: Metamorphic testing for Deep-Learning-driven image recognition systems accompanied by Background-Relevance

人工智能 相关性(法律) 计算机科学 变质岩 模式识别(心理学) 深度学习 地质学 古生物学 政治学 法学
作者
Zhiyi Zhang,Pu Wang,Hongjing Guo,Ziyuan Wang,Yuqian Zhou,Zhiqiu Huang
出处
期刊:Information & Software Technology [Elsevier BV]
卷期号:140: 106701-106701 被引量:27
标识
DOI:10.1016/j.infsof.2021.106701
摘要

Recently, advances in Deep Learning (DL) have promoted the development of DL-driven image recognition systems in various fields, such as medical treatment, face detection, etc., almost achieving the same level of performance as the human brain. Nevertheless, using DL-driven image recognition systems in these safety-critical domains requires ensuring the accuracy and the stability of these systems. Recent research in this direction mainly focuses on using the image transformations for the overall image to detect the inconsistency of image recognition systems. However, the influence of the image background region ( i . e . , the region of the image other than the target object) on the recognition result of the systems and the robustness evaluation of the systems are not considered. To evaluate the robustness of DL-driven image recognition systems about image background region changes, this paper introduces DeepBackground, a novel metamorphic testing method for DL-driven image recognition systems. First, we define a new metric, termed Background-Relevance (BRC) to assess the influence degree of the image background region on the recognition result of the image recognition systems. DeepBackground defines a series of domain-specific metamorphic relations (MRs) combined with BRC and automatically generates many follow-up test images based on these MRs. Finally, DeepBackground detects the inconsistency of these systems and evaluates their robustness about image background changes according to BRC. Our empirical validation on 3 commercial image recognition services and 6 popular convolutional neural networks (CNNs) models shows that DeepBackground can not only evaluate the robustness of these image recognition systems about image background changes according to BRC, but also can detect their inconsistent behaviors. DeepBackground is capable of automatically generating high-quality test input images to detect the inconsistency of the image recognition systems, and evaluating the robustness of these systems about image background changes according to BRC. • This paper proposes a novel metamorphic testing method for Deep-Learning-driven image recognition systems (DeepBackground). • The approach introduces and formulates a new metric: Background-Relevance (BRC), which can assess the robustness of image recognition systems about background changes. • It also can detect the inconsistency of the image recognition systems. • An empirical study on several image recognition systems shows the feasibility and effectiveness of the approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shinn发布了新的文献求助10
3秒前
3秒前
qing发布了新的文献求助10
5秒前
大胡子完成签到 ,获得积分10
5秒前
春天在这李完成签到,获得积分10
5秒前
慕青应助傻子与白痴采纳,获得10
6秒前
Chaobo完成签到 ,获得积分20
7秒前
4114发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助10
11秒前
在水一方应助Return采纳,获得10
11秒前
12秒前
斯文败类应助假茂茂采纳,获得10
12秒前
在水一方应助sdh7941采纳,获得10
13秒前
13秒前
hhhhhhl完成签到,获得积分10
13秒前
14秒前
15秒前
科研通AI5应助小马奔奔采纳,获得10
15秒前
小立发布了新的文献求助10
17秒前
瘦瘦冬寒完成签到 ,获得积分10
17秒前
17秒前
哈哈哈应助qing采纳,获得10
18秒前
星辰大海应助镜哥采纳,获得10
19秒前
dsl应助洋葱Qoo采纳,获得10
19秒前
22秒前
22秒前
杜佳霖发布了新的文献求助10
23秒前
23秒前
乐乐应助nsc采纳,获得30
24秒前
wdy111应助nsc采纳,获得10
24秒前
科研通AI5应助nsc采纳,获得30
24秒前
Orange应助nsc采纳,获得10
24秒前
大模型应助nsc采纳,获得10
24秒前
FashionBoy应助nsc采纳,获得30
25秒前
wdy111应助nsc采纳,获得10
25秒前
Jenny完成签到,获得积分10
25秒前
SciGPT应助nsc采纳,获得10
25秒前
上官若男应助nsc采纳,获得10
25秒前
wdy111应助nsc采纳,获得10
25秒前
25秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
The Moiseyev Dance Company Tours America: "Wholesome" Comfort during a Cold War 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3980457
求助须知:如何正确求助?哪些是违规求助? 3524399
关于积分的说明 11221363
捐赠科研通 3261846
什么是DOI,文献DOI怎么找? 1800921
邀请新用户注册赠送积分活动 879507
科研通“疑难数据库(出版商)”最低求助积分说明 807283