DeepBackground: Metamorphic testing for Deep-Learning-driven image recognition systems accompanied by Background-Relevance

人工智能 相关性(法律) 计算机科学 变质岩 模式识别(心理学) 深度学习 地质学 古生物学 政治学 法学
作者
Zhiyi Zhang,Pu Wang,Hongjing Guo,Ziyuan Wang,Yuqian Zhou,Zhiqiu Huang
出处
期刊:Information & Software Technology [Elsevier]
卷期号:140: 106701-106701 被引量:27
标识
DOI:10.1016/j.infsof.2021.106701
摘要

Recently, advances in Deep Learning (DL) have promoted the development of DL-driven image recognition systems in various fields, such as medical treatment, face detection, etc., almost achieving the same level of performance as the human brain. Nevertheless, using DL-driven image recognition systems in these safety-critical domains requires ensuring the accuracy and the stability of these systems. Recent research in this direction mainly focuses on using the image transformations for the overall image to detect the inconsistency of image recognition systems. However, the influence of the image background region ( i . e . , the region of the image other than the target object) on the recognition result of the systems and the robustness evaluation of the systems are not considered. To evaluate the robustness of DL-driven image recognition systems about image background region changes, this paper introduces DeepBackground, a novel metamorphic testing method for DL-driven image recognition systems. First, we define a new metric, termed Background-Relevance (BRC) to assess the influence degree of the image background region on the recognition result of the image recognition systems. DeepBackground defines a series of domain-specific metamorphic relations (MRs) combined with BRC and automatically generates many follow-up test images based on these MRs. Finally, DeepBackground detects the inconsistency of these systems and evaluates their robustness about image background changes according to BRC. Our empirical validation on 3 commercial image recognition services and 6 popular convolutional neural networks (CNNs) models shows that DeepBackground can not only evaluate the robustness of these image recognition systems about image background changes according to BRC, but also can detect their inconsistent behaviors. DeepBackground is capable of automatically generating high-quality test input images to detect the inconsistency of the image recognition systems, and evaluating the robustness of these systems about image background changes according to BRC. • This paper proposes a novel metamorphic testing method for Deep-Learning-driven image recognition systems (DeepBackground). • The approach introduces and formulates a new metric: Background-Relevance (BRC), which can assess the robustness of image recognition systems about background changes. • It also can detect the inconsistency of the image recognition systems. • An empirical study on several image recognition systems shows the feasibility and effectiveness of the approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
善学以致用应助JLLi采纳,获得10
刚刚
欣慰外绣发布了新的文献求助10
2秒前
聚乙二醇完成签到 ,获得积分10
2秒前
方方博完成签到,获得积分10
2秒前
许金钗完成签到,获得积分10
3秒前
YN完成签到,获得积分10
4秒前
一米九的树完成签到,获得积分10
4秒前
落寞溪灵完成签到 ,获得积分10
5秒前
孙成成完成签到 ,获得积分10
5秒前
咔什么嚓完成签到,获得积分10
6秒前
悬崖茶杯发布了新的文献求助10
6秒前
7秒前
LJL完成签到 ,获得积分10
8秒前
Brocade发布了新的文献求助30
8秒前
云木完成签到 ,获得积分10
11秒前
萧水白应助顶针采纳,获得10
13秒前
Altria完成签到,获得积分10
13秒前
55555发布了新的文献求助20
14秒前
15秒前
xl²-B完成签到,获得积分10
15秒前
16秒前
啦啦啦完成签到 ,获得积分10
19秒前
你帅你有理完成签到,获得积分10
20秒前
wxyllxx发布了新的文献求助10
21秒前
Jing完成签到,获得积分10
21秒前
劳健龙完成签到 ,获得积分10
23秒前
23秒前
弹指一挥间完成签到 ,获得积分10
30秒前
32秒前
著名番茄完成签到,获得积分20
33秒前
脑三问完成签到,获得积分0
35秒前
35秒前
稞小弟发布了新的文献求助10
38秒前
yq发布了新的文献求助10
38秒前
KONG发布了新的文献求助10
39秒前
畅畅关注了科研通微信公众号
40秒前
44秒前
古风应助欣慰外绣采纳,获得10
44秒前
wxyllxx发布了新的文献求助10
45秒前
yq完成签到,获得积分20
46秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 量子力学 冶金 电极
热门帖子
关注 科研通微信公众号,转发送积分 3317555
求助须知:如何正确求助?哪些是违规求助? 2949033
关于积分的说明 8544029
捐赠科研通 2625200
什么是DOI,文献DOI怎么找? 1436632
科研通“疑难数据库(出版商)”最低求助积分说明 665920
邀请新用户注册赠送积分活动 651882