Adversarial Attacks and Defenses for Deep-Learning-Based Unmanned Aerial Vehicles

对抗制 计算机科学 稳健性(进化) 对抗性机器学习 人工智能 计算机安全 深度学习 机器学习 生物化学 基因 化学
作者
Jiwei Tian,Buhong Wang,Guo Rong-xiao,Zhen Wang,Kunrui Cao,Xiaodong Wang
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:9 (22): 22399-22409 被引量:118
标识
DOI:10.1109/jiot.2021.3111024
摘要

The introduction of deep learning (DL) technology can improve the performance of cyber–physical systems (CPSs) in many ways. However, this also brings new security issues. To tackle these challenges, this article explores the vulnerabilities of DL-based unmanned aerial vehicles (UAVs), which are typical CPSs. Although many research works have been reported previously on adversarial attacks of DL models, only few of them are concerned about safety-critical CPSs, especially regression models in such systems. In this article, we analyze the problem of adversarial attacks against DL-based UAVs and propose two adversarial attack methods against regression models in UAVs. The experiments demonstrate that the proposed nontargeted and targeted attack methods both can craft imperceptible adversarial images and pose a considerable threat to the navigation and control of UAVs. To address this problem, adversarial training and defensive distillation methods are further investigated and evaluated, increasing the robustness of DL models in UAVs. To our knowledge, this is the first study on adversarial attacks and defenses against DL-based UAVs, which calls for more attention to the security and safety of such safety-critical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CodeCraft应助现代的大叔采纳,获得10
刚刚
刚刚
刘仁轨完成签到,获得积分10
刚刚
吕小软完成签到,获得积分10
1秒前
1秒前
余杭村王小虎完成签到,获得积分10
2秒前
顺心的书包完成签到,获得积分10
2秒前
nano_metal完成签到 ,获得积分10
2秒前
安屿完成签到,获得积分10
2秒前
3秒前
Mania发布了新的文献求助10
3秒前
我要查文献完成签到 ,获得积分10
3秒前
刘仁轨发布了新的文献求助10
3秒前
newplayer发布了新的文献求助10
3秒前
3秒前
撒西不理发布了新的文献求助10
4秒前
qiaoxixi发布了新的文献求助10
5秒前
5秒前
星辰大海应助J_C_Van采纳,获得10
6秒前
善良的导师完成签到,获得积分10
6秒前
LXXue完成签到,获得积分20
6秒前
红绿蓝发布了新的文献求助10
6秒前
jiajia完成签到 ,获得积分10
6秒前
NexusExplorer应助77采纳,获得10
7秒前
putongren发布了新的文献求助10
7秒前
狂野芷卉发布了新的文献求助10
7秒前
謓言发布了新的文献求助10
8秒前
花花发布了新的文献求助10
9秒前
LXXue发布了新的文献求助30
9秒前
幽默的友灵完成签到,获得积分10
9秒前
liuzhr发布了新的文献求助10
10秒前
10秒前
han完成签到,获得积分10
10秒前
科研通AI5应助林建峰采纳,获得10
11秒前
TT发布了新的文献求助10
11秒前
11秒前
SYLH应助玫瑰延误了花期采纳,获得20
12秒前
Mania完成签到,获得积分10
12秒前
漂亮的雁露完成签到,获得积分20
13秒前
善学以致用应助LXXue采纳,获得10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Handbook on Inequality and Social Capital 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3547087
求助须知:如何正确求助?哪些是违规求助? 3124191
关于积分的说明 9358008
捐赠科研通 2822719
什么是DOI,文献DOI怎么找? 1551643
邀请新用户注册赠送积分活动 723580
科研通“疑难数据库(出版商)”最低求助积分说明 713825