Robotic grasping method of bolster spring based on image-based visual servoing with YOLOv3 object detection algorithm

人工智能 靠垫 计算机视觉 视觉伺服 最小边界框 机器人 计算机科学 稳健性(进化) 对象(语法) 机器视觉 目标检测 姿势 工程类 图像(数学) 模式识别(心理学) 基因 机械工程 生物化学 化学
作者
Dafa Li,Huanlong Liu,Wei Tao,Jianyi Zhou
出处
期刊:Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science [SAGE]
卷期号:236 (3): 1780-1795 被引量:5
标识
DOI:10.1177/09544062211019774
摘要

In this paper, to address the problem of automatic positioning and grasping of bolster spring with complex geometric features and cluttered background, a novel image-based visual servoing (IBVS) control method based on the corner points features of YOLOv3 object detection bounding box is proposed and applied to the robotic grasping system of bolster spring. The YOLOv3 object detection model is used to detect and position the bolster spring and then based on the corner points features of the bolster spring bounding box, the IBVS controller is designed to drive the end effector of the robot to the desired pose. This method adopts the approach-align-grasp control strategy to achieve the grasping of the bolster spring, which is very robust to the calibration parameter errors of the camera and the robot model. With the help of Robotics and Machine Vision Toolboxes in Matlab, IBVS simulation analysis based on feature points is carried out. The results show that it is reasonable to use the corner points of the object detection bounding box as image features under the initial pose where the image plane is parallel to the object plane. The positioning and grasping experiments are conducted on the robotic grasping platform of bolster spring. The results show that this method is effective for automatic positioning and grasping of bolster spring with complex geometric features and cluttered background, and it has strong robustness to the change of illumination.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
登徒子好色完成签到,获得积分10
刚刚
lc发布了新的文献求助10
1秒前
shufessm完成签到,获得积分0
2秒前
2秒前
2秒前
橘子完成签到 ,获得积分10
3秒前
赵凡完成签到,获得积分10
5秒前
7秒前
7秒前
orange9发布了新的文献求助10
8秒前
xmhxpz发布了新的文献求助10
8秒前
xinchi完成签到,获得积分10
9秒前
赵凡发布了新的文献求助10
10秒前
充电宝应助大力沛萍采纳,获得10
10秒前
10秒前
10秒前
哒啦啦完成签到,获得积分10
11秒前
曾礽发布了新的文献求助10
13秒前
13秒前
13秒前
叶叶叶叶发布了新的文献求助10
13秒前
Akim应助林菲菲采纳,获得10
14秒前
15秒前
大佬发布了新的文献求助10
15秒前
善学以致用应助昔年若许采纳,获得10
16秒前
关于关于发布了新的文献求助10
16秒前
16秒前
16秒前
li完成签到,获得积分20
17秒前
18秒前
虚幻初之发布了新的文献求助10
18秒前
桃子发布了新的文献求助10
20秒前
犹豫的箴完成签到 ,获得积分20
20秒前
Shayulajiao发布了新的文献求助10
20秒前
大力沛萍发布了新的文献求助10
21秒前
23秒前
刘璇1发布了新的文献求助10
23秒前
ceeray23应助Shayulajiao采纳,获得30
23秒前
曾礽完成签到,获得积分10
23秒前
鸽子爱好者完成签到,获得积分10
24秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3458976
求助须知:如何正确求助?哪些是违规求助? 3053650
关于积分的说明 9037422
捐赠科研通 2742859
什么是DOI,文献DOI怎么找? 1504561
科研通“疑难数据库(出版商)”最低求助积分说明 695334
邀请新用户注册赠送积分活动 694589