Enhanced dielectric response of ternary polymeric composite films via interfacial bonding between V2C MXene and wide-bandgap ZnS

材料科学 高-κ电介质 电介质 陶瓷 复合材料 复合数 三元运算 带隙 光电子学 计算机科学 程序设计语言
作者
Qihuang Deng,Wei Xiong,Bingshuang Mao,Maolin Bo,Yefeng Feng
出处
期刊:Ceramics International [Elsevier]
卷期号:47 (23): 32938-32946 被引量:12
标识
DOI:10.1016/j.ceramint.2021.08.192
摘要

Abstract Increasing the dielectric constant of polymer/sulfide ceramic composites by using wide-bandgap semiconducting sulfide ceramic fillers like ZnS is difficult because of their low interface polarization. To increase the dielectric constant, in this study, ternary polymer-based composite films were designed and fabricated using a hybrid filler consisting of shell-like ZnS particles and core-like V2C MXene particles. First, V2C MXene with a multi-layered structure was synthesized from the simplest raw materials followed by the in-situ hydrothermal growth of ZnS particles around the V2C particles. Then, binary polymer/ZnS and ternary polymer/V2C–ZnS composites were fabricated, and their dielectric, conductive, and electrical breakdown properties were investigated. Finally, the effect of interfacial bonding between the V2C and ZnS phases was investigated by density functional theory calculations, and the contribution of V2C/ZnS interfacial bonding to the higher dielectric constant of the ternary composites than that of the binary composites was explained. The ternary composites exhibited balanced electrical properties suitable for energy storage applications. The ternary composite with 10 wt% hybrid filler loading exhibited a high dielectric constant of ~52, a low dielectric loss of ~0.11 at 100 Hz, and a high electrical breakdown strength of ~202 MV m−1. This study paves the way for the facile fabrication of high-performance composite dielectrics for application in advanced capacitors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ygwu0946完成签到,获得积分10
刚刚
blue2021发布了新的文献求助10
刚刚
刚刚
刚刚
完美的火龙果完成签到,获得积分10
1秒前
1秒前
1秒前
赘婿应助judy采纳,获得10
2秒前
Tomi发布了新的文献求助10
2秒前
2秒前
优雅冰蝶完成签到,获得积分10
3秒前
Swiftie发布了新的文献求助10
3秒前
cc0514gr发布了新的文献求助10
3秒前
3秒前
传奇3应助扶溪筠采纳,获得10
3秒前
科研通AI5应助老实的惜萍采纳,获得20
4秒前
最棒的懒羊羊完成签到 ,获得积分10
4秒前
科研通AI5应助sunnyfish007采纳,获得10
4秒前
liuqi_77发布了新的文献求助10
4秒前
坦率依珊发布了新的文献求助10
4秒前
zlych完成签到,获得积分10
5秒前
dbq发布了新的文献求助10
6秒前
飞飞发布了新的文献求助30
6秒前
牟百发布了新的文献求助10
6秒前
爆米花应助陈述采纳,获得10
7秒前
Dr-张显华发布了新的文献求助10
7秒前
丘比特应助WC采纳,获得10
8秒前
10秒前
10秒前
11秒前
11秒前
W乐事儿完成签到,获得积分10
13秒前
平凡完成签到,获得积分10
13秒前
WC完成签到,获得积分20
15秒前
yyan发布了新的文献求助10
15秒前
15秒前
judy发布了新的文献求助10
15秒前
16秒前
17秒前
17秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
工业结晶技术 880
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3489951
求助须知:如何正确求助?哪些是违规求助? 3077035
关于积分的说明 9147332
捐赠科研通 2769213
什么是DOI,文献DOI怎么找? 1519635
邀请新用户注册赠送积分活动 704109
科研通“疑难数据库(出版商)”最低求助积分说明 702098