An applicable and automatic method for earth surface water mapping based on multispectral images

地表水 多光谱图像 曲面(拓扑) 遥感 比例(比率) 分割 地球观测 卫星 深度学习 计算机科学 水循环 地理 人工智能 环境科学 地图学 工程类 数学 环境工程 航空航天工程 生物 生态学 几何学
作者
Xin Luo,Xiaohua Tong,Zhongwen Hu
出处
期刊:International journal of applied earth observation and geoinformation 卷期号:103: 102472-102472 被引量:9
标识
DOI:10.1016/j.jag.2021.102472
摘要

Earth’s surface water plays an important role in the global water cycle, environmental processes, and human society, and it is necessary to dynamically capture the distribution and extent of surface water on Earth. However, due to the high complexity of the surface environment of Earth, the current surface water mapping methods are limited in applicability and precision. In this study, to explore an automatic and applicable model for surface water mapping, particularly for the regions with highly heterogenous backgrounds, we adopted state-of-the-art deep learning techniques and structured a new model, namely, WatNet, for surface water mapping. Specifically, we combined a state-of-the-art image classification model and a semantic segmentation model into an improved deep learning model. For the fine-scale identification of small water bodies, the combined model was further improved with surface water mapping-tailored design. To learn the surface water features of worldwide regions, a surface water knowledge base that consists of worldwide satellite images was built in this study. The newly structured WatNet model was tested on three highly heterogeneous regions, and as demonstrated by the results, 1) the trained WatNet model achieved the highest accuracies, which were above 95%, for all the selected test regions; 2) the new structured WatNet model yields significant improvements through state-of-the-art model combinations and the surface water-tailored design; and 3) unlike conventional methods, which usually require parameterization in accordance with the specific surface environment, trained WatNet can be directly applied for highly accurate surface water mapping, and, thus, no human labor is required.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
舒心糖豆完成签到 ,获得积分10
刚刚
鹏飞完成签到,获得积分10
2秒前
Suttier完成签到,获得积分10
2秒前
SYLH应助张莹莹采纳,获得10
2秒前
orixero应助无情的宛儿采纳,获得10
3秒前
贺兴潇发布了新的文献求助10
3秒前
传奇3应助AlvinCZY采纳,获得10
4秒前
5秒前
豌豆发布了新的文献求助10
5秒前
bias发布了新的文献求助10
6秒前
6秒前
乐乐应助水煮鱼采纳,获得10
6秒前
朝露关注了科研通微信公众号
6秒前
7秒前
8秒前
8秒前
8秒前
JamesPei应助yyy采纳,获得10
9秒前
Bo发布了新的文献求助10
9秒前
10秒前
0313发布了新的文献求助10
10秒前
精明松思发布了新的文献求助10
11秒前
相由心生发布了新的文献求助10
12秒前
12秒前
12秒前
13秒前
www发布了新的文献求助10
13秒前
13秒前
javascript发布了新的文献求助10
14秒前
袁钰琳完成签到 ,获得积分10
14秒前
15秒前
16秒前
16秒前
16秒前
酷炫邑完成签到,获得积分10
16秒前
王世缘完成签到,获得积分10
16秒前
16秒前
16秒前
AlvinCZY发布了新的文献求助10
17秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Devlopment of GaN Resonant Cavity LEDs 666
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3454966
求助须知:如何正确求助?哪些是违规求助? 3050269
关于积分的说明 9020709
捐赠科研通 2738874
什么是DOI,文献DOI怎么找? 1502329
科研通“疑难数据库(出版商)”最低求助积分说明 694480
邀请新用户注册赠送积分活动 693178