Real-Time Scheduling for Dynamic Partial-No-Wait Multiobjective Flexible Job Shop by Deep Reinforcement Learning

强化学习 计算机科学 调度(生产过程) 工作车间 动态优先级调度 作业车间调度 工业工程 流水车间调度 地铁列车时刻表 分布式计算 数学优化 人工智能 工程类 运营管理 嵌入式系统 操作系统 布线(电子设计自动化) 数学
作者
Shu Luo,Linxuan Zhang,Yushun Fan
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:19 (4): 3020-3038 被引量:130
标识
DOI:10.1109/tase.2021.3104716
摘要

In modern discrete flexible manufacturing systems, dynamic disturbances frequently occur in real time and each job may contain several special operations in partial-no-wait constraint due to technological requirements. In this regard, a hierarchical multiagent deep reinforcement learning (DRL)-based real-time scheduling method named hierarchical multi-agent proximal policy optimization (HMAPPO) is developed to address the dynamic partial-no-wait multiobjective flexible job shop scheduling problem (DMOFJSP-PNW) with new job insertions and machine breakdowns. The proposed HMAPPO contains three proximal policy optimization (PPO)-based agents operating in different spatiotemporal scales, namely, objective agent, job agent, and machine agent. The objective agent acts as a higher controller periodically determining the temporary objectives to be optimized. The job agent and machine agent are lower actuators, respectively, choosing a job selection rule and machine assignment rule to achieve the temporary objective at each rescheduling point. Five job selection rules and six machine assignment rules are designed to select an uncompleted job and assign the next operation of which together with its successors in no-wait constraint on the corresponding processing machines. A hierarchical PPO-based training algorithm is developed. Extensive numerical experiments have confirmed the effectiveness and superiority of the proposed HMAPPO compared with other well-known dynamic scheduling methods. Note to Practitioners—The motivation of this article stems from the need to develop real-time scheduling methods for modern discrete flexible manufacturing factories, such as aerospace product manufacturing and steel manufacturing, where dynamic events frequently occur, and each job may contain several operations subjected to the no-wait constraint. Traditional dynamic scheduling methods, such as metaheuristics or dispatching rules, either suffer from poor time efficiency or fail to ensure good solution quality for multiple objectives in the long-term run. Meanwhile, few of the previous studies have considered the partial-no-wait constraint among several operations from the same job, which widely exists in many industries. In this article, we propose a hierarchical multiagent deep reinforcement learning (DRL)-based real-time scheduling method named HMAPPO to address the dynamic partial-no-wait multiobjective flexible job shop scheduling problem (DMOFJSP-PNW) with new job insertions and machine breakdowns. The proposed HMAPPO uses three DRL-based agents to adaptively select the temporary objectives and choose the most feasible dispatching rules to achieve them at different rescheduling points, through which the rescheduling can be made in real time and a good compromise among different objectives can be obtained in the long-term schedule. Extensive experimental results have demonstrated the effectiveness and superiority of the proposed HMAPPO. For industrial applications, this method can be extended to many other production scheduling problems, such as hybrid flow shops and open shop with different uncertainties and objectives.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
热心的冬菱完成签到 ,获得积分10
2秒前
2秒前
缓慢思枫发布了新的文献求助10
3秒前
略略略发布了新的文献求助10
4秒前
suzy-123完成签到,获得积分10
4秒前
111发布了新的文献求助30
4秒前
康家二少完成签到,获得积分10
5秒前
小蘑菇应助细腻的三德采纳,获得10
6秒前
6秒前
无极微光应助xnkl采纳,获得20
7秒前
失眠亦寒发布了新的文献求助10
7秒前
丘比特应助耍酷楷瑞采纳,获得10
7秒前
7秒前
Asteroid发布了新的文献求助10
8秒前
8秒前
量子星尘发布了新的文献求助10
9秒前
碧蓝青梦发布了新的文献求助10
9秒前
沉默莺发布了新的文献求助20
10秒前
11秒前
寸阴若岁完成签到,获得积分10
11秒前
科研通AI6应助tt采纳,获得10
11秒前
11秒前
汉堡包应助疯狂的面包采纳,获得10
12秒前
科研通AI6应助After采纳,获得10
12秒前
13秒前
13秒前
vvvg发布了新的文献求助10
13秒前
丘比特应助失眠亦寒采纳,获得10
15秒前
狱颐鸣鸣完成签到,获得积分20
16秒前
lin发布了新的文献求助10
16秒前
Akim应助Belinda采纳,获得10
17秒前
诚心惜寒发布了新的文献求助10
17秒前
17秒前
18秒前
传奇3应助WN采纳,获得10
19秒前
After完成签到,获得积分10
19秒前
19秒前
科目三应助耶耶采纳,获得10
21秒前
耍酷楷瑞发布了新的文献求助10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5594267
求助须知:如何正确求助?哪些是违规求助? 4679962
关于积分的说明 14812493
捐赠科研通 4646674
什么是DOI,文献DOI怎么找? 2534851
邀请新用户注册赠送积分活动 1502831
关于科研通互助平台的介绍 1469497