亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Real-Time Scheduling for Dynamic Partial-No-Wait Multiobjective Flexible Job Shop by Deep Reinforcement Learning

强化学习 计算机科学 调度(生产过程) 工作车间 动态优先级调度 作业车间调度 工业工程 流水车间调度 地铁列车时刻表 分布式计算 数学优化 人工智能 工程类 运营管理 嵌入式系统 操作系统 布线(电子设计自动化) 数学
作者
Shu Luo,Linxuan Zhang,Yushun Fan
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:19 (4): 3020-3038 被引量:130
标识
DOI:10.1109/tase.2021.3104716
摘要

In modern discrete flexible manufacturing systems, dynamic disturbances frequently occur in real time and each job may contain several special operations in partial-no-wait constraint due to technological requirements. In this regard, a hierarchical multiagent deep reinforcement learning (DRL)-based real-time scheduling method named hierarchical multi-agent proximal policy optimization (HMAPPO) is developed to address the dynamic partial-no-wait multiobjective flexible job shop scheduling problem (DMOFJSP-PNW) with new job insertions and machine breakdowns. The proposed HMAPPO contains three proximal policy optimization (PPO)-based agents operating in different spatiotemporal scales, namely, objective agent, job agent, and machine agent. The objective agent acts as a higher controller periodically determining the temporary objectives to be optimized. The job agent and machine agent are lower actuators, respectively, choosing a job selection rule and machine assignment rule to achieve the temporary objective at each rescheduling point. Five job selection rules and six machine assignment rules are designed to select an uncompleted job and assign the next operation of which together with its successors in no-wait constraint on the corresponding processing machines. A hierarchical PPO-based training algorithm is developed. Extensive numerical experiments have confirmed the effectiveness and superiority of the proposed HMAPPO compared with other well-known dynamic scheduling methods. Note to Practitioners—The motivation of this article stems from the need to develop real-time scheduling methods for modern discrete flexible manufacturing factories, such as aerospace product manufacturing and steel manufacturing, where dynamic events frequently occur, and each job may contain several operations subjected to the no-wait constraint. Traditional dynamic scheduling methods, such as metaheuristics or dispatching rules, either suffer from poor time efficiency or fail to ensure good solution quality for multiple objectives in the long-term run. Meanwhile, few of the previous studies have considered the partial-no-wait constraint among several operations from the same job, which widely exists in many industries. In this article, we propose a hierarchical multiagent deep reinforcement learning (DRL)-based real-time scheduling method named HMAPPO to address the dynamic partial-no-wait multiobjective flexible job shop scheduling problem (DMOFJSP-PNW) with new job insertions and machine breakdowns. The proposed HMAPPO uses three DRL-based agents to adaptively select the temporary objectives and choose the most feasible dispatching rules to achieve them at different rescheduling points, through which the rescheduling can be made in real time and a good compromise among different objectives can be obtained in the long-term schedule. Extensive experimental results have demonstrated the effectiveness and superiority of the proposed HMAPPO. For industrial applications, this method can be extended to many other production scheduling problems, such as hybrid flow shops and open shop with different uncertainties and objectives.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Benhnhk21完成签到,获得积分10
23秒前
研友_ZG4ml8完成签到 ,获得积分10
26秒前
37秒前
40秒前
purple发布了新的文献求助10
41秒前
Willow发布了新的文献求助10
44秒前
45秒前
52秒前
蓝色花园发布了新的文献求助10
57秒前
科研通AI6应助purple采纳,获得10
1分钟前
领导范儿应助Willow采纳,获得10
2分钟前
wy.he应助shanshan__采纳,获得60
2分钟前
uikymh完成签到 ,获得积分0
2分钟前
2分钟前
Noob_saibot发布了新的文献求助10
2分钟前
眯眯眼的秋柔完成签到,获得积分20
2分钟前
3分钟前
3分钟前
雪白的威完成签到,获得积分10
3分钟前
酷波er应助科研通管家采纳,获得10
3分钟前
雪白的威发布了新的文献求助10
3分钟前
3分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
香蕉觅云应助蓝色花园采纳,获得10
3分钟前
Willow发布了新的文献求助10
3分钟前
purple发布了新的文献求助10
4分钟前
bkagyin应助purple采纳,获得30
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
烟花应助科研通管家采纳,获得10
5分钟前
SciGPT应助科研通管家采纳,获得30
5分钟前
八戒想偷懒完成签到,获得积分10
5分钟前
制冷剂完成签到 ,获得积分10
5分钟前
上官若男应助Shenqm采纳,获得10
5分钟前
Kashing完成签到,获得积分10
5分钟前
yzhilson完成签到 ,获得积分0
5分钟前
6分钟前
昭昭发布了新的文献求助10
6分钟前
领导范儿应助andrele采纳,获得10
6分钟前
6分钟前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
List of 1,091 Public Pension Profiles by Region 961
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5450047
求助须知:如何正确求助?哪些是违规求助? 4557980
关于积分的说明 14265261
捐赠科研通 4481291
什么是DOI,文献DOI怎么找? 2454754
邀请新用户注册赠送积分活动 1445562
关于科研通互助平台的介绍 1421482