Real-Time Scheduling for Dynamic Partial-No-Wait Multiobjective Flexible Job Shop by Deep Reinforcement Learning

强化学习 计算机科学 调度(生产过程) 工作车间 动态优先级调度 作业车间调度 工业工程 流水车间调度 地铁列车时刻表 分布式计算 数学优化 人工智能 工程类 运营管理 嵌入式系统 操作系统 布线(电子设计自动化) 数学
作者
Shu Luo,Linxuan Zhang,Yushun Fan
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:19 (4): 3020-3038 被引量:130
标识
DOI:10.1109/tase.2021.3104716
摘要

In modern discrete flexible manufacturing systems, dynamic disturbances frequently occur in real time and each job may contain several special operations in partial-no-wait constraint due to technological requirements. In this regard, a hierarchical multiagent deep reinforcement learning (DRL)-based real-time scheduling method named hierarchical multi-agent proximal policy optimization (HMAPPO) is developed to address the dynamic partial-no-wait multiobjective flexible job shop scheduling problem (DMOFJSP-PNW) with new job insertions and machine breakdowns. The proposed HMAPPO contains three proximal policy optimization (PPO)-based agents operating in different spatiotemporal scales, namely, objective agent, job agent, and machine agent. The objective agent acts as a higher controller periodically determining the temporary objectives to be optimized. The job agent and machine agent are lower actuators, respectively, choosing a job selection rule and machine assignment rule to achieve the temporary objective at each rescheduling point. Five job selection rules and six machine assignment rules are designed to select an uncompleted job and assign the next operation of which together with its successors in no-wait constraint on the corresponding processing machines. A hierarchical PPO-based training algorithm is developed. Extensive numerical experiments have confirmed the effectiveness and superiority of the proposed HMAPPO compared with other well-known dynamic scheduling methods. Note to Practitioners—The motivation of this article stems from the need to develop real-time scheduling methods for modern discrete flexible manufacturing factories, such as aerospace product manufacturing and steel manufacturing, where dynamic events frequently occur, and each job may contain several operations subjected to the no-wait constraint. Traditional dynamic scheduling methods, such as metaheuristics or dispatching rules, either suffer from poor time efficiency or fail to ensure good solution quality for multiple objectives in the long-term run. Meanwhile, few of the previous studies have considered the partial-no-wait constraint among several operations from the same job, which widely exists in many industries. In this article, we propose a hierarchical multiagent deep reinforcement learning (DRL)-based real-time scheduling method named HMAPPO to address the dynamic partial-no-wait multiobjective flexible job shop scheduling problem (DMOFJSP-PNW) with new job insertions and machine breakdowns. The proposed HMAPPO uses three DRL-based agents to adaptively select the temporary objectives and choose the most feasible dispatching rules to achieve them at different rescheduling points, through which the rescheduling can be made in real time and a good compromise among different objectives can be obtained in the long-term schedule. Extensive experimental results have demonstrated the effectiveness and superiority of the proposed HMAPPO. For industrial applications, this method can be extended to many other production scheduling problems, such as hybrid flow shops and open shop with different uncertainties and objectives.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
虚心沂发布了新的文献求助10
1秒前
1秒前
1秒前
丫丫完成签到,获得积分10
1秒前
2秒前
书生意气发布了新的文献求助10
2秒前
忧虑的以菱完成签到,获得积分10
2秒前
酷波er应助文献达人采纳,获得10
2秒前
happy完成签到,获得积分10
3秒前
3秒前
椰子在长江送礼物应助haha采纳,获得10
3秒前
卷柏完成签到,获得积分10
3秒前
3秒前
量子星尘发布了新的文献求助10
4秒前
清秀苗条发布了新的文献求助10
4秒前
4秒前
4秒前
4秒前
4秒前
5秒前
杨柳完成签到,获得积分10
5秒前
斯莫佩尔发布了新的文献求助10
5秒前
6秒前
丫丫发布了新的文献求助30
6秒前
7秒前
1.1发布了新的文献求助10
7秒前
开放的映波完成签到,获得积分20
7秒前
瘦瘦白昼完成签到 ,获得积分10
7秒前
8秒前
水煮南瓜头完成签到 ,获得积分10
8秒前
8秒前
完美世界应助闻人华忆采纳,获得10
8秒前
星辰大海应助lihailong采纳,获得10
8秒前
8秒前
9秒前
土豆鸡发布了新的文献求助10
9秒前
诚心的小土豆应助wt采纳,获得10
9秒前
10秒前
斯文败类应助书生意气采纳,获得10
10秒前
舒服的尔丝完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4577106
求助须知:如何正确求助?哪些是违规求助? 3996300
关于积分的说明 12372082
捐赠科研通 3670338
什么是DOI,文献DOI怎么找? 2022766
邀请新用户注册赠送积分活动 1056873
科研通“疑难数据库(出版商)”最低求助积分说明 944022