生物
基因
小桶
转录组
艾美球虫
遗传学
基因组
基因表达
作者
Yang Gao,Zeyang Suding,Lele Wang,Dandan Liu,Shijie Su,Jinjun Xu,Junjie Hu,Jianping Tao
标识
DOI:10.1016/j.vetpar.2021.109480
摘要
Eimeria necatrix is one of the most pathogenic chicken coccidia and causes avian coccidiosis, an enteric disease of major economic importance worldwide. Eimeria parasites have complex developmental life cycles, with an exogenous phase in the environment and an endogenous phase in the chicken intestine. Oocysts excreted by chickens rapidly undergo meiosis and cell division to form eight haploid sporozoites (SZ). SZ liberated from sporocysts in the chicken intestine migrate to their preferred site of development to initiate cellular invasion. To date, almost nothing is known about the proteins that mediate parasite invasion in E. necatrix. In order to discover genes with functions involved in cellular invasion, the transcriptome profiles of E. necatrix unsporulated oocysts (UO) and SZ were analyzed using a combination of third-generation single-molecule real-time sequencing (TGS) and second-generation sequencing (SGS) followed by qRT-PCR validation. Correction of TGS long reads by SGS short reads resulted in 34,932 (UO) and 23,040 (SZ) consensus isoforms. After subsequent assembly, a total of 4949 and 4254 genes were identified from UO and SZ libraries, respectively. A total of 8376 genes were identified as differentially expressed genes (DEGs) between SZ and UO. Compared to UO, 4057 genes were upregulated and 4319 genes were downregulated in SZ. Approximately 1399 and 1758 genes were defined as stage-specific genes in SZ and UO, respectively. Gene Ontology (GO) classification and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that 2978 upregulated SZ genes were clustered into 29 GO terms, and 857 upregulated SZ genes were associated with 26 KEGG pathways. We also predicted a further 50 upregulated SZ genes and 73 upregulated UO genes encoding microneme proteins, apical membrane antigens, rhoptry neck proteins, rhoptry proteins, dense granule proteins, heat shock proteins, calcium-dependent protein kinases, cyclin-dependent kinases, cGMP-dependent protein kinase, and glycosylphosphatidylinositol-anchored surface antigens. Our data reveal new features of the E. necatrix transcriptional landscape and provide resources for the development of novel vaccine candidates against E. necatrix infection.
科研通智能强力驱动
Strongly Powered by AbleSci AI