Performance evaluation of a deep learning image reconstruction (DLIR) algorithm in “double low” chest CTA in children: a feasibility study

医学 放射科 血管造影 迭代重建 算法 人工智能 核医学 图像噪声 计算机科学 图像(数学)
作者
Jihang Sun,Haoyan Li,Jun Gao,Jianying Li,Michelle Li,Zuofu Zhou,Yun Peng
出处
期刊:Radiologia Medica [Springer Nature]
卷期号:126 (9): 1181-1188 被引量:29
标识
DOI:10.1007/s11547-021-01384-2
摘要

Chest CT angiography (CTA) is a convenient clinical examination for children with an increasing need to reduce both radiation and contrast medium doses. Iterative Reconstruction algorithms are often used to reduce image noise but encounter limitations under low radiation dose and conventional 100 kVp tube voltage may not provide adequate enhancement under low contrast dose. To evaluate the performance of a deep learning image reconstruction (DLIR) algorithm in conjunction with lower tube voltage in chest CTA in children under reduced radiation and contrast medium (CM) dose. 46 Children (age 5.9 ± 4.2 years) in the study group underwent chest CTA with 70 kVp and CM dose of 0.8–1.2 ml/kg. Images were reconstructed at 0.625 mm using a high setting DLIR (DLIR-H). The control group consisted of 46 age-matching children scanned with 100 kVp, CM dose of 1.3–1.8 ml/kg and images reconstructed with 50% and 100% adaptive statistical iterative reconstruction-V. Two radiologists evaluated images subjectively for overall image noise, vessel contrast and vessel margin clarity separately on a 5-point scale (5, excellent and 1, not acceptable). CT value and image noise of aorta and erector spinae muscle were measured. Compared to the control group, the study group reduced the dose-length-product by 11.2% (p = 0.01) and CM dose by 24% (p < 0.001), improved the enhancement in aorta (416.5 ± 113.1HU vs. 342.0 ± 57.6HU, p < 0.001) and reduced noise (15.1 ± 3.5HU vs. 18.6 ± 4.4HU, p < 0.001). The DLIR-H images provided acceptable scores on all 3 aspects of the qualitative evaluation. “Double low” chest CTA in children using 70 kVp and DLIR provides high image quality with reduced noise and improved vessel enhancement for diagnosis while further reduces radiation and CM dose.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
DL完成签到,获得积分10
2秒前
可爱的函函应助SSScome采纳,获得10
2秒前
2秒前
caicai完成签到,获得积分10
3秒前
3秒前
Ava应助嗯哼采纳,获得10
3秒前
温柔的白筠完成签到,获得积分20
5秒前
5秒前
充电宝应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
CodeCraft应助科研通管家采纳,获得10
5秒前
小宋应助科研通管家采纳,获得10
5秒前
Lucas应助科研通管家采纳,获得10
5秒前
CodeCraft应助科研通管家采纳,获得10
5秒前
小马甲应助科研通管家采纳,获得10
5秒前
6秒前
华仔应助科研通管家采纳,获得10
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
hengyu应助科研通管家采纳,获得30
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
搜集达人应助科研通管家采纳,获得10
6秒前
6秒前
orixero应助科研通管家采纳,获得10
6秒前
Orange应助饼饼采纳,获得10
6秒前
Jasper应助科研通管家采纳,获得10
6秒前
英俊的铭应助联合工程采纳,获得10
7秒前
英姑应助Jun采纳,获得10
7秒前
嘘唏完成签到,获得积分10
8秒前
wzx发布了新的文献求助10
8秒前
共享精神应助Caism采纳,获得10
8秒前
9秒前
虎虎完成签到,获得积分10
10秒前
绿眼虫发布了新的文献求助10
11秒前
11秒前
狗不理完成签到,获得积分10
11秒前
乐乐应助lxr2采纳,获得10
11秒前
11秒前
liang发布了新的文献求助10
12秒前
12秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Very-high-order BVD Schemes Using β-variable THINC Method 990
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
Field Guide to Insects of South Africa 660
Mantodea of the World: Species Catalog 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3396578
求助须知:如何正确求助?哪些是违规求助? 3006233
关于积分的说明 8820128
捐赠科研通 2693327
什么是DOI,文献DOI怎么找? 1475263
科研通“疑难数据库(出版商)”最低求助积分说明 682393
邀请新用户注册赠送积分活动 675628