亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

UAV Trajectory Planning in Wireless Sensor Networks for Energy Consumption Minimization by Deep Reinforcement Learning

强化学习 无线传感器网络 能源消耗 计算机科学 弹道 能量最小化 缩小 轨迹优化 实时计算 无线 人工智能 最优化问题 数学优化 最优控制 工程类 计算机网络 算法 数学 电信 化学 物理 计算化学 天文 电气工程 程序设计语言
作者
Botao Zhu,Ebrahim Bedeer,Ha H. Nguyen,Robert Barton,Jérôme Henry
出处
期刊:IEEE Transactions on Vehicular Technology [Institute of Electrical and Electronics Engineers]
卷期号:70 (9): 9540-9554 被引量:171
标识
DOI:10.1109/tvt.2021.3102161
摘要

Unmanned aerial vehicles (UAVs) have emerged as a promising candidate solution for data collection of large-scale wireless sensor networks (WSNs). In this paper, we investigate a UAV-aided WSN, where cluster heads (CHs) receive data from their member nodes, and a UAV is dispatched to collect data from CHs. We aim to minimize the total energy consumption of the UAV-WSN system in a complete round of data collection. Toward this end, we formulate the energy consumption minimization problem as a constrained combinatorial optimization problem by jointly selecting CHs from clusters and planning the UAV's visiting order to the selected CHs. The formulated energy consumption minimization problem is NP-hard, and hence, hard to solve optimally. To tackle this challenge, we propose a novel deep reinforcement learning (DRL) technique, pointer network-A* (Ptr-A*), which can efficiently learn the UAV trajectory policy for minimizing the energy consumption. The UAV's start point and the WSN with a set of pre-determined clusters are fed into the Ptr-A*, and the Ptr-A* outputs a group of CHs and the visiting order of CHs, i.e., the UAV's trajectory. The parameters of the Ptr-A* are trained on small-scale clusters problem instances for faster training by using the actor-critic algorithm in an unsupervised manner. Simulation results show that the trained models based on 20-clusters and 40-clusters have a good generalization ability to solve the UAV's trajectory planning problem in WSNs with different numbers of clusters, without retraining the models. Furthermore, the results show that our proposed DRL algorithm outperforms two baseline techniques.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
人类后腿完成签到 ,获得积分10
32秒前
42秒前
xin发布了新的文献求助10
47秒前
SUNny发布了新的文献求助10
53秒前
搬砖的化学男完成签到 ,获得积分10
1分钟前
Panther完成签到,获得积分10
1分钟前
sailingluwl完成签到,获得积分10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
SUNny发布了新的文献求助10
1分钟前
笑傲完成签到,获得积分10
2分钟前
开心每一天完成签到 ,获得积分10
2分钟前
房天川完成签到 ,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
3分钟前
杨泽宇发布了新的文献求助10
3分钟前
日常K人完成签到 ,获得积分10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
SnowElf完成签到,获得积分10
3分钟前
4分钟前
hongye发布了新的文献求助30
4分钟前
SnowElf发布了新的文献求助10
4分钟前
4分钟前
4分钟前
orangel发布了新的文献求助10
4分钟前
hongye完成签到 ,获得积分10
4分钟前
小粒橙完成签到 ,获得积分10
4分钟前
4分钟前
5分钟前
HaoZhang发布了新的文献求助10
5分钟前
HaoZhang完成签到,获得积分20
5分钟前
尼古拉斯铁柱完成签到 ,获得积分10
5分钟前
矜持完成签到 ,获得积分10
5分钟前
Mic应助笑点低的斑马采纳,获得10
5分钟前
lixuebin发布了新的文献求助10
6分钟前
6分钟前
小白发布了新的文献求助10
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664503
求助须知:如何正确求助?哪些是违规求助? 4863764
关于积分的说明 15107879
捐赠科研通 4823133
什么是DOI,文献DOI怎么找? 2581988
邀请新用户注册赠送积分活动 1536081
关于科研通互助平台的介绍 1494505