UAV Trajectory Planning in Wireless Sensor Networks for Energy Consumption Minimization by Deep Reinforcement Learning

高效能源利用 能量(信号处理) 无线 最优化问题 马尔可夫决策过程 数学优化 基站 无人机
作者
Botao Zhu,Ebrahim Bedeer,Ha H. Nguyen,Robert Barton,Jerome Henry
出处
期刊:IEEE Transactions on Vehicular Technology [Institute of Electrical and Electronics Engineers]
卷期号:70 (9): 9540-9554 被引量:1
标识
DOI:10.1109/tvt.2021.3102161
摘要

Unmanned aerial vehicles (UAVs) have emerged as a promising candidate solution for data collection of large-scale wireless sensor networks (WSNs). In this paper, we investigate a UAV-aided WSN, where cluster heads (CHs) receive data from their member nodes, and a UAV is dispatched to collect data from CHs. We aim to minimize the total energy consumption of the UAV-WSN system in a complete round of data collection. Toward this end, we formulate the energy consumption minimization problem as a constrained combinatorial optimization problem by jointly selecting CHs from clusters and planning the UAV's visiting order to the selected CHs. The formulated energy consumption minimization problem is NP-hard, and hence, hard to solve optimally. To tackle this challenge, we propose a novel deep reinforcement learning (DRL) technique, pointer network-A* (Ptr-A*), which can efficiently learn the UAV trajectory policy for minimizing the energy consumption. The UAV's start point and the WSN with a set of pre-determined clusters are fed into the Ptr-A*, and the Ptr-A* outputs a group of CHs and the visiting order of CHs, i.e., the UAV's trajectory. The parameters of the Ptr-A* are trained on small-scale clusters problem instances for faster training by using the actor-critic algorithm in an unsupervised manner. Simulation results show that the trained models based on 20-clusters and 40-clusters have a good generalization ability to solve the UAV's trajectory planning problem in WSNs with different numbers of clusters, without retraining the models. Furthermore, the results show that our proposed DRL algorithm outperforms two baseline techniques.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
YaoX完成签到,获得积分10
1秒前
2秒前
2秒前
2秒前
YE发布了新的文献求助10
2秒前
2秒前
3秒前
张肥肥完成签到 ,获得积分20
3秒前
明亮的斩关注了科研通微信公众号
3秒前
科研通AI5应助搞怪的人龙采纳,获得10
3秒前
4秒前
xiuxiu_27完成签到 ,获得积分10
4秒前
李健应助qym采纳,获得10
5秒前
风趣的爆米花完成签到,获得积分20
5秒前
韭菜发布了新的文献求助10
5秒前
5秒前
5秒前
yzxzdm完成签到 ,获得积分10
6秒前
小破仁666发布了新的文献求助10
6秒前
6秒前
英姑应助优秀的逊采纳,获得10
7秒前
ccc完成签到,获得积分20
7秒前
7秒前
7秒前
小二郎应助诗谙采纳,获得10
7秒前
7秒前
7秒前
圣晟胜发布了新的文献求助10
8秒前
8秒前
等待幼荷完成签到,获得积分10
8秒前
笑言相欢ZMN完成签到,获得积分20
8秒前
8秒前
Eric发布了新的文献求助10
8秒前
gaos发布了新的文献求助10
9秒前
9秒前
9秒前
ipeakkka发布了新的文献求助10
9秒前
10秒前
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740