UAV Trajectory Planning in Wireless Sensor Networks for Energy Consumption Minimization by Deep Reinforcement Learning

强化学习 无线传感器网络 能源消耗 计算机科学 弹道 能量最小化 缩小 轨迹优化 实时计算 无线 人工智能 最优化问题 数学优化 最优控制 工程类 计算机网络 算法 数学 电信 化学 物理 计算化学 天文 电气工程 程序设计语言
作者
Botao Zhu,Ebrahim Bedeer,Ha H. Nguyen,Robert Barton,Jérôme Henry
出处
期刊:IEEE Transactions on Vehicular Technology [Institute of Electrical and Electronics Engineers]
卷期号:70 (9): 9540-9554 被引量:171
标识
DOI:10.1109/tvt.2021.3102161
摘要

Unmanned aerial vehicles (UAVs) have emerged as a promising candidate solution for data collection of large-scale wireless sensor networks (WSNs). In this paper, we investigate a UAV-aided WSN, where cluster heads (CHs) receive data from their member nodes, and a UAV is dispatched to collect data from CHs. We aim to minimize the total energy consumption of the UAV-WSN system in a complete round of data collection. Toward this end, we formulate the energy consumption minimization problem as a constrained combinatorial optimization problem by jointly selecting CHs from clusters and planning the UAV's visiting order to the selected CHs. The formulated energy consumption minimization problem is NP-hard, and hence, hard to solve optimally. To tackle this challenge, we propose a novel deep reinforcement learning (DRL) technique, pointer network-A* (Ptr-A*), which can efficiently learn the UAV trajectory policy for minimizing the energy consumption. The UAV's start point and the WSN with a set of pre-determined clusters are fed into the Ptr-A*, and the Ptr-A* outputs a group of CHs and the visiting order of CHs, i.e., the UAV's trajectory. The parameters of the Ptr-A* are trained on small-scale clusters problem instances for faster training by using the actor-critic algorithm in an unsupervised manner. Simulation results show that the trained models based on 20-clusters and 40-clusters have a good generalization ability to solve the UAV's trajectory planning problem in WSNs with different numbers of clusters, without retraining the models. Furthermore, the results show that our proposed DRL algorithm outperforms two baseline techniques.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
liyanping完成签到,获得积分10
刚刚
1秒前
zedmaster完成签到,获得积分10
1秒前
雨夹雪发布了新的文献求助10
1秒前
风趣小蜜蜂完成签到 ,获得积分10
2秒前
阳光的丹雪完成签到,获得积分10
3秒前
3秒前
天天快乐应助整齐星月采纳,获得10
3秒前
yukino发布了新的文献求助10
3秒前
5秒前
5秒前
Sean发布了新的文献求助10
5秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
IDHNAPHO发布了新的文献求助10
7秒前
我是老大应助吴荣方采纳,获得10
8秒前
pluto应助吴昊俣采纳,获得10
8秒前
qq完成签到,获得积分10
10秒前
10秒前
10秒前
华仔应助zzz采纳,获得10
10秒前
11秒前
能干的捕发布了新的文献求助30
11秒前
wangjialong发布了新的文献求助10
11秒前
纸万完成签到,获得积分10
11秒前
Lin应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
NexusExplorer应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
Lin应助科研通管家采纳,获得10
11秒前
情怀应助科研通管家采纳,获得10
11秒前
子车茗应助科研通管家采纳,获得20
11秒前
FashionBoy应助科研通管家采纳,获得10
12秒前
Lin应助科研通管家采纳,获得10
12秒前
充电宝应助科研通管家采纳,获得10
12秒前
niu应助科研通管家采纳,获得10
12秒前
12秒前
汉堡包应助科研通管家采纳,获得10
12秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5583465
求助须知:如何正确求助?哪些是违规求助? 4667303
关于积分的说明 14766350
捐赠科研通 4609471
什么是DOI,文献DOI怎么找? 2529219
邀请新用户注册赠送积分活动 1498433
关于科研通互助平台的介绍 1467061